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ABSTRACT

Technical analysis, also known as "charting," has been part of financial practice for many

decades, but this discipline has not received the same level of academic scrutiny and acceptance as

more traditional approaches such as fundamental analysis. One of the main obstacles is the highly

subjective nature of technical analysis—the presence of geometric shapes in historical !price charts is

often in the eyes of the beholder. In this paper, we propose a systematic and automatic approach to

technical pattern recognition using nonparametric kernel regression, and apply this method to a large

number of U.S. stocks from 1962 to 1996 to evaluate the effectiveness to technical analysis. By

comparing the unconditional empirical distribution of daily stock returns to the conditional

distribution—conditioned on specific technical indicators such as head-and-shoulders or double-

bottoms—we find that over the 31-year sample period, several technical indicators do provide

incremental information and may have some practical value.
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One of the greatest gulfs between academic finance and industry practice is the separation

that exists between technical analysts and their academic critics. In contrast to fundamental

analysis, which was quick to be adopted by the scholars of modern quantitative finance, tech-

nical analysis has been an orphan from the very start. It has been argued that the difference

between fundamental analysis and technical analysis is not unlike the difference between

astronomy and astrology. Among some circles, technical analysis is known as "voodoo fi-

nance." And in his influential book A Random Walk Down Wall Street, Burton Maildel

(1996) concludes that "[ujnder scientific scrutiny, chart-reading must share a pedestal with

alchemy."

However, several academic studies suggest that despite its jargon and methods, technical

analysis may well be an effective means for extracting useful information from market prices.

For example, in rejecting the Random Walk Hypothesis for weekly US stock indexes, Lo and

MacKinlay (1988, 1999) have shown that past prices may be used to forecast future returns to

some degree, a fact that all technical analysts take for granted. Studies by Tabell and Tabell

(1964), Treynor and Ferguson (1985), Brown and Jennings (1989), Jegadeesh and Titman

(1993), Blume, Easley, and O'Hara (1994), Chan, Jegadeesh, and Lakonishok (1996), Lo and

MacKinlay (1997), Grundy and Martin (1998), and Rouwenhorst (1998) have also provided

indirect support for technical analysis, and more direct support has been given by Pruitt

and White (1988), Neftci (1991), Broth, Lakonishok, and LeBaron (1992), Neely, Weber,

and Dittmar (1997), Neely and Weller (1998), Chang and Osler (1994), Osler and Chang

(1995), and Allen and Karjalainen (1999).

One explanation for this state of controversy and confusion is the unique and sometimes

impenetrable jargon used by technical analysts, some of which has developed into a standard

lexicon that can be translated. But there are many "homegrown" variations, each with its

own patois, which can often frustrate the uninitiated. Campbell, Lo, and MacKinlay (1997,

pp. 43—44) provide a striking example of the linguistic barriers between technical analysts

and academic finance by contrasting this statement:

The presence of clearly identified support and resistance levels, coupled with

a one-third retracement parameter when prices lie between them, suggests the
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presence of strong buying and selling opportunities in the near-term.

with this one:

The magnitudes and decay pattern of the first twelve autocorrelations and the

statistical significance of the Box-Pierce Q-statistic suggest the presence of a

high-frequency predictable component in stock returns.

Despite the fact that both statements have the same meaning—that past prices contain

information for predicting future returns-—-most readers find one statement plausible and

the other puzzling, or worse, offensive.

These linguistic barriers underscore an important difference between technical analysis

and quantitative finance: technical analysis is primarily visual, while quantitative finance is

primarily algebraic and numerical. Therefore, technical analysis employs the tools of geom-

etry and pattern recognition, while quantitative finance employs the tools of mathematical

analysis and probability and statistics. In the wake of recent breakthroughs in financial en-

gineering, computer technology, and numerical algorithms, it is no wonder that quantitative

finance has overtaken technical analysis in popularity—the principles of portfolio optimiza-

tion are far easier to program into a computer than the basic tenets of technical analysis.

Nevertheless, technical analysis has survived through the years, perhaps because its visual

mode of analysis is more conducive to human cognition, and because pattern recognition is

one of the few repetitive activities for which computers do not have an absolute advantage

(yet).
Indeed, it is difficult to dispute the potential value of price/volume charts when confronted

with the visual evidence. For example, compare the two hypothetical price charts given in

Figure 1. Despite the fact that the two price series are identical over the first half of the

sample, the volume patterns differ, and this seems to be informative. In particular, the lower

chart, which shows high volume accompanying a positive price trend, suggests that there

may be more information content in the trend, e.g., broader participation among investors.

The fact that the joint distribution of prices and volume contains important information is

hardly controversial among academics. Why, then, is the value of a visual depiction of that

joint distribution so hotly contested?
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In this paper, we hope to bridge this gulf between technical analysis and quantitative

finance by developing a systematic aiid scientific approach to the practice of technical anal-

ysis, and by employing the now-standard methods of empirical analysis to gauge the efficacy

of technical indicators over time and across securities. In doing so, our goal is not only to

develop a lingua franca with which disciples of both disciplines can engage in productive

dialogue, but also to extend the reach of technical analysis by augmenting its tool kit with

some modem techniques in pattern recognition.

The general goal of technical analysis is to identify regularities in the time series of prices

by extracting nonlinear patterns from noisy data. Implicit in this goal is the recognition

that some price movements are significant—they contribute to the formation of a specific

pattern—and others are merely random fluctuations to be ignored. In many cases, the

human eye can perform this "signal extraction" quickly and accurately, and until recently,

computer algorithms could not. However, a class of statistical estimators, called smoothing

estimators, is ideally suited to this task because they extract nonlinear relations the) by

"averaging out" the noise. Therefore, we propose using these estimators to mimic, and in

some cases, sharpen the skills of a trained tec]mical analyst in identifying certain patterns

in historical price series.

In Section I, we provide a brief review of smoothing estimators and describe in detail the

specific smoothing estimator we use in our analysis: kernel regression. Our algorithm for

automating technical analysis is described in Section II. We apply this algorithm to the daily

returns of several hundred U.S. stocks from 1962 to 1996 and report the results in Section

III. To check the accuracy of our statistical inferences, we perform several Monte Carlo

simulation experiments and the results are given in Section IV. We conclude in Section V.

I. Smoothing Estimators and Kernel Regression

The starting point for any study of technical analysis is the recognition that prices evolve

in a nonlinear fashion over time and that the nonlinearities contain certain regularities or

patterns. To capture such regularities quantitatively, we begin by asserting that prices {P}
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satisfy the following expression:

Pt = m(Xt) + c , t=1,...,T (1)

where m(X) is an arbitrary fixed but unknown nonlinear function of a state variable X,

and {e} is white noise.

For the purposes of pattern recognition in which our goal is to construct a smooth function

nze) to approximate the time series of prices {pt}, we set the state variable equal to time,

X = t. However, to keep our notation consistent with that of the kernel regression literature,

we will continue to use X, in our exposition.

When prices are expressed as (1), it is apparent that geometric patterns can emerge from

a visual inspection of historical prices series—prices are the sum of the nonlinear pattern

im(Xt) and white noise—and that such patterns may provide useful information about the

unknown function me) to be estimated. But just how useful is this information?

To answer this question empirically and systematically, we must first develop a method

for automating the identification of technical indicators, i.e., we require a pattern recogni

tion algorithm. Once such an algorithm is developed, it can be applied to a large number of

securities over many time periods to determine the efficacy of various technical indicators.

Moreover, quantitative comparisons of the performance of several indicators can be con-

ducted, and the statistical significance of such performance can be assessed through Monte

Carlo simulation and bootstrap techniques.'

In Section A, we provide a brief review of a general class of pattern-recognition tech-

niques known as smoothing, and in Section B we describe in some detail a particular method

called nonparametric kernel regression on which our algorithm is based. Kernel regression

estimators are calibrated by a bandwidth parameter and we discuss how the bandwidth is

selected in C.

A. Smoothing Estimators

One of the most common methods for estimating nonlinear relations such as (1) is smoothing,

in which observational errors are reduced by averaging the data in sophisticated ways. Ker-
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nel regression, orthogonal series expansion, projection pursuit, nearest-neighbor estimators,

average derivative estimators, splines, and neural networks are all examples of smoothing

estimators. In addition to possessing certain statistical optirnality properties, smoothing

estimators are motivated by their close correspondence to the way human cognition extracts

regularities from noisy data.2 Therefore, they are ideal for our purposes.

To provide some intuition for how averaging can recover nonlinear relations such as

the function me) in (1), suppose we wish to estimate mC) at a particWar date to when

X0=x0. Now suppose that for this one observation, X0, we can obtain repeated independent

observations of the price P,0, say = Pi,-• . , = p, (note that these are ii independent

realizations of the price at the same date to, clearly an impossibility in practice, but let us

continue with this thought experiment for a few more steps). Then a natural estimator of

the function mC) at the point zo is

ñt(xo) = 1pi = 1[m(xo)+efl (2)
ni=1

= m(xo) + —Ed, (3)

and by the Law of Large Numbers, the second term in (3) becomes negligible for large ii.

Of course, if {P} is a time series, we do not have the luxury of repeated observations

for a given X,. However, if we assume that the function mC) is sufficiently smooth, then

for time-series observations X near the value x0, the corresponding values of P should be

close to m(xo). In other words, if mC) is sufficiently smooth, then in a small neighborhood

around x0, m(xo) will be nearly constant and may be estimated by taking an average of the

Pr's that correspond to those Xe's near x0. The closer the Xi's are to the value x0, the closer

an average of corresponding Pt's will be to m(xo). This argues for a weighted average of the

Pt's, where the weights decline as the X,'s get farther away from x0. This weighted-average

or "local averaging" procedure of estimating m(x) is the essence of smoothing.

More formally, for any arbitrary x, a smoothing estimator of m(x) may be expressed as

lT
rui(x) w(z)Pt (4)

t= 1
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where the weights {wt(x)} are large for those Ps's paired with Xe's near x, and small for those

Pr's with Xe's far from x. To implement such a procedure, we must define what we mean by

"near" and "far." If we choose too large a neighborhood around x to compute the average,

the weighted average will be too smooth and will not exhibit the genuine nonlinearities of

mC). If we choose too small a neighborhood around x, the weighted average will be too

variable, reflecting noise as well as the variations in mC). Therefore, the weights {wt(x)}

must be chosen carefully to balance these two considerations.

B. Kernel Regression

For the kernel regression estimator, the weight function Wt(x) is constructed from a proba-

bility density function K(x), also called a kernel:3

K(x) � 0 , fK(n)d'u= 1. (5)

By rescaling the kernel with respect to a parameter h>0, we can change its spread, i.e., let:

Kh(u) K(u/h) , fKh(u)du
= 1 (6)

and define the weight function to be used in the weighted average (4) as

wt,h(x) — Xt)/gh(x) (7)

gh(x) fLKh(x—Xt). (8)

If h is very small, the averaging will be done with respect to a rather small neighborhood

around each of the Xe's. If h is very large, the averaging will be over larger neighborhoods of

the Xe's. Therefore, controlling the degree of averaging amounts to adjusting the smoothing

parameter Ii, also known as the bandwidth. Choosing the appropriate bandwidth is an

important aspect of any local-averaging technique and is discussed more fully in Section C.
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Substituting (8) into (4) yields the Nadaraya- Watson kernel estimator 'thh(x) of m(x):

1 '" >i::1 Kh(x — X)Ymnh(x) = —EWt,h(X)Yt = T (9)T E=1 Khfr — X)

Under certain regularity conditions on the shape of the kernel K and the magnitudes and

behavior of the weights as the sample size grows, it may be shown, that ñth(x) converges to

ni(x) asymptotically in several ways (see Hãrdlle (1990) for further details). This convergence

property holds for a wide class of kernels, but for the remainder of this paper we shall use

the most popular choice of kernel, the Gaussian kernel:

Kh(x) = (10)

C. Selecting the Bandwidth

Selecting the appropriate bandwidth h in (9) is clearly central to the success of ñzhC) in

approximating mO—too little averaging yields a function that is too choppy, and too much

averaging yields a function that is too smooth. To illustrate these two extremes, Figure II

displays the Nadaraya-Watson kernel estimator applied to 500 datapoints generated from

the relation:

= Sin(Xt) + 0.5 c , c 'S-' N(0, 1) (11)

where X is evenly spaced in the interval [0, 2ir]. Panel 11(a) plots the raw data and the

function to be approximated.

Kernel estimators for three different bandwidths are plotted as solid lines in Panels 11(b)—

(c). The bandwidth in 11(b) is clearly too small; the function is too variable, fitting the

"noise" 0.5 t as well as the "signal" Sin(S). Increasing the bandwidth slightly yields a much

more accurate approximation to Sine) as Panel 11(c) illustrates. However, Panel 11(d) shows

that if the bandwidth is increased beyond some point, there is too much averaging and

information is lost.

There are several methods for automating the choice of bandwidth h in (9), but the most
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popular is the cross-validation method in which h is chosen to minimize the cross-validation

function:

CV(h) = (P - rnh,t)2 (12)

where

Tflh,t = >W,hYr (13)

The estimator iuih,t is the kernel regression estimator applied to the price history {P,-} with

the t-th observation omitted, and the summands in (12) are the squared errors of the ihh,t's,

each evaluated at the omitted observation. For a given bandwidth parameter It, the cross-

validation function is a measure of the ability of the kernel regression estimator to fit each

observation P when that observation is not used to construct the kernel estimator. By

selecting the bandwidth that minimizes this function, we obtain a kernel estimator that

satisfies certain optimality properties, e.g., minimum asymptotic mean-squared error.4

Interestingly, the bandwidths obtained from minimizing the cross-validation function are

generally too large for our application to technical analysis—when we presented several

professional technical analysts with plots of cross-validation-fitted functions ni4e), they all

concluded that the fitted functions were too smooth. In other words, the cross-validation-

determined bandwidth places too much weight on prices far away from any given time t,

inducing too much averaging and discarding valuable information in local price movements.

Through trial and error, and by polling professional technical analysts, we have found that

an acceptable solutioft to this problem is to use a bandwidth of 0.3 x h*, where h minimizes

CV(h).5 Admittedly, this is an ad hoc approach, and it remains an important challenge for

future research to develop a more rigorous procedure.

Another promising direction for future research is to consider alternatives to kernel re-

gression. Although useful for its simplicity and intuitive appeal, kernel estimators suffer

from a number of well-known deficiencies, e.g., boundary bias, lack of local variability in

the degree of smoothing, etc. A popular alternative that overcomes these particular defi-
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ciencies is local polynomial regression in which local averaging of polynomials is performed

to obtain an estimator of tm(x) 6 Such alternatives may yield important improvements the

pattern-recognition algorithm described in Section II.

TI. Automating Technical Analysis

Armed with a mathematical representation the) of {P} with which geometric properties can

be characterized in an objective manner, we can now construct an algorithm for automating

the detection of technical patterns. Specifically, our algorithm contains three steps:

1. Define each technical pattern in terms of its geometric properties, e.g., local extrema

(maxima and minima).

2. Construct a kernel estimator thC) of a given time series of prices so that its extrema

can be determined numerically.

3. Analyze the) for occurrences of each technical pattern.

The last two steps are rather straightforward applications of kernel regression. The. first step

is likely to be the most controversial because it is here that the skills and judgment of a

professional technical analyst come into play. Although we will argue in Section A that most

technical indicators can be characterized by specific sequences of local extrema, technical

analysts may argue that these are poor approximations to the kinds of patterns that trained

human analysts can identify.

While pattern-recognition techniques have been successful in automating a number of

tasks previously considered to be uniquely human endeavors—fingerprint identification,

handwriting analysis, face recognition, and so on—nevertheless it is possible that no algo-

rithm can completely capture the skills of an experienced technical analyst. We acknowledge

that any automated procedure for pattern recognition may miss some of the more subtle nu-

ances that human cognition is capable of discerning, but whether an algorithm is a poor

approximation to human judgment can only be determined by investigating the approxima-

tion errors empirically. As long as an algorithm can provide a reasonable approximation to
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some of the cognitive abilities of a human analyst, we can use such an algorithm to investi-

gate the empirical performance of those aspects of technical analysis for which the algorithm

is a good approximation. Moreover, if technical analysis is an art form that can be taught,

then surely its basic precepts can be quantified and automated to some degree. And as

increasingly sophisticated pattern-recognition techniques are developed, a larger fraction of

the art will become a science.

More importantly, from a practical perspective, there may be significant benefits to devel-

oping an algorithmic approach to technical analysis because of the leverage that technology

can provide. As with many other successful technologies, the automation of technical pat-

tern recognition may not replace the skills of a technical analyst, but can amplify them

considerably.

In Section A, we propose definitions of ten technical patterns based on their extrema. In

Section B, we describe a specific algorithm to identify technical patterns based on the local

extrema of kernel regression estimators, and provide specific examples of the algorithm at

work in Section C.

A. Definitions of Technical Patterns

We focus on five pairs of technical patterns that are among the most popular patterns of

traditional technical analysis (see, for example, Edwards and Magee (1966, Chapters VII—

X)): head-and-shoulders (HS) and inverse head-and-shoulders (IRS), broadening tops (BT)

and bottoms (BB), triangle tops (TT) and bottoms (TB), rectangle tops (RT) and bottoms

(RB), and double tops (DT) and bottoms (DB). There are many other technical indicators

that may be easier to detect algorithmically—moving averages, support and resistance levels,

and oscillators, for example—but because we wish to illustrate the power of smoothing

techniques in automating technical analysis, we focus on precisely those patterns that are

most difficult to quantify analytically.

Consider the systematic component me)ofa price history {P} and suppose we have iden-

tified ii local extrema, i.e., the local maxima and minima, of tm{';). Denote by E1, E2,. . . ,

the ii extrema and t, t,. . . , t the dates on which these extrema occur. Then we have the

following definitions:
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Definition 1 (Head-and-Shoulders) Head-and-shoulders (HS) and inverted head-and-
shoulders (IHS) patterns are characterized by a sequence of five consecutive local extrema
E1,. . , P25 such that:

a maximum

IfS =—
E1 and P25 within 1.5percent of their average
P22 and P24 within 1.5percent of their average

P21 a minimum

IHS =—
F1 and F5 within 1.5percent of their average
F2 and F4 within l.5percent of their average

Observe that only five consecutive extrema are required to identify a head-and-shoulders

pattern. This follows from the formalization of the geometry of a head-and-shoulders pattern:

three peaks, with the midifie peak higher than the other two. Because consecutive extrema

must alternate between maxima and minima for smooth functions,7 the three-peaks pattern

corresponds to a sequence of five local extrema: maximum, minimum, highest maximum,

minimum, and maximum. The inverse head-and-shoulders is simply the mirror image of the

head-and-shoulders, with the initial local extrema a minimum.

Because broadening, rectangle, and triangle patterns can begin on either a local maximum

or minimum, we aUow for both of these possibilities in our definitions by distinguishing

between broadening tops and bottoms:

Definition 2 (Broadening) Broadening tops (BTOP) and bottoms (EBOT) are charac-
terized by a sequence of five consecutive local extrema F1,.. . , F5 such that:

a maximum I F1 a minimum
BTOP P21<E3<E5 , BBOT

1E2<P24

Definitions for triangle and rectangle patterns follow naturally:

Definition 3 (Triangle) Triangle tops (TTOF) and bottoms (TBOT) are characterized by
a sequence of five consecutive local extrema Er,.. . ,E5 such that:

I E1 a maximum (F1 a minimum
TTOP=— , TBOT=

L.E2<P24 IE2>E4
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Definitign 4 (Rectangle) Rectangle tops (RTOP) and bottoms (RBOT) are characterized
by a sequence of five consecutive local extrema E1,. . . , E5 such that:

a maximum

RTOP = tops within 0. 75 percent of their average
—

bottoms within 0.75 percent of their average
lowest top> highest bottom

a minimum

RBOT = tops within 0.75 percent of their average
—

bottoms within 0.75 percent of their average
lowest top > highest bottom

The definition for double tops and bottoms is slightly more involved. Consider first the

double top. Starting at a local maximum E1, we locate the highest local maximum Ea

occurring after E1 in the set of all local extrema in the sample. We require that the two

tops, E1 and E, be within 1.5 percent of their average. Finally, following Edwards and

Magee (1966), we require that the two tops occur at least a month, or 22 trading days,

apart. Therefore, we have:

Definition 5 (Double Top and Bottom) Double tops (DTOP) and bottoms (DBO T) are
characterized by an initial local extremum E1 and a subsequent local extrema E and Eb such
that:

sup{Pç : t>t, k=2,...,n}
inf{Pt : t>t , k=2,;..,n}

and

P21 a maximum
DTOP Ej and E within 1.5 percent of their average

•

1t—t>22

E a minimum
DBOT . P11 and Eb within 1.5 percent of their average

• 1t—t>22

B. The Identification Algorithm

Our algorithm begins with a sample of prices {P1,. .. Pr} for which we fit kernel regressions,

one for each subsample or window from t to t+l+d—1, where t varies from 1 to T—l—d+1,
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and I and d are fixed parameters whose purpose is explained below. In the empirical analysis

of Section III, we set I =35 and d = 3, hence each window consists of 38 trading days.

The motivation for fitting kernel regressions to rolling windows of data is to narrow our

focus to patterns that are completed within the span of the window—i + d trading days in

our case. If we fit a single kernel regression to the entire dataset, many patterns of various

durations may emerge, and without imposing some additional structure on the nature of the

patterns, it is virtually impossible to distinguish signal from noise in this case. Therefore,

our algorithm fixes the length of the window at I+d, but kernel regressions are estimated on

a rolling basis and we search for patterns in each window.

Of course, for any fixed window, we can only find patterns that are completed within l+d

trading days. Without further structure on the systematic component of prices me), this is

a restriction that any empirical analysis must contend with.8 We choose a shorter window

length of 1 = 35 trading days to focus on short-horizon patterns that may be more relevant

for active equity traders, and leave the analysis of longer-horizon patterns to future research.

The parameter d controls for the fact that in practice we do not observe a realization of

a given pattern as soon as it has completed. Instead, we assume that there may be a lag

between the pattern completion and the time of pattern detection. To account for this lag,

we require that the final extremum that completes a pattern occurs on day t+l—1; hence d is

the number of days following the completion of a pattern that must pass before the pattern

is detected. This will become more important in Section III when we compute conditional

returns, conditioned on the realization of each pattern. In particular, we compute post-

pattern returns starting from the end of trading day t+l+d, i.e., one day after the pattern

has completed. For example, if we determine that a head-and-shoulder pattern has completed

on day t + 1— 1 (having used prices from time t through time t + 1 + d —1), we compute the

conditional one-day gross return as Yt+l+d+1/Yt÷l+d. Hence we do not use any forward

information in computing returns conditional on pattern completion. In other words, the

lag d ensures that we are computing our conditional returns completely out-of-sample and

without any "look-ahead" bias.

Within each window, we estimate a kernel regression using the prices in that window,
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hence:

Et+l+d—1
it I \ fl

I \ — s=t flhkr—S).I—, .
mhkr) —

'c-'t+t+d—liy I ' — —

L.5=t IhkT — 8)

where Kh(z) is given in (10) and h is the bandwidth parameter (see Section C). It is clear

that ñih(r) is a differentiable function of r.

Once the function ñ'ih(r) has been computed, its local extrema can be readily identified

by finding times r such that Sgn(ñz(r)) = —Sgn(n4(r+1)), where ñz denotes the derivative

of flih with respect to r and Sgn(.) is the signum function. If the signs of ñ%(r) ñt(r+1) are

+1 and —1, respectively, then we have found a local maximum, and if they are —1 and +1,

respectively, then we have found a local minimum. Once such a time r has been identified,

we proceed to identify a maximum or minimum in the original price series {P} in the range

[t—i, t+iJ, and the extrema in the original price series are used to determine whether or not

a pattern has occurred according to the definitions of Section A.

If th(r) = 0 for a given i-, which occurs if closing prices stay the same for several

consecutive days, we need to check whether the price we have found is a local minimum or

maximum. We look for the date s such that s = inf { s > r : ñz(s) $ 0 }. We then

apply the same method as discussed above, except here we compare Sgn(i%(r —1)) and

Sgn(u14(s)).

One useful consequence of this algorithm is that the series of extrema which it identifies

contains alternating minima and maxima. That is, if the kth extremum is a maximum, then

it is always the case that the (k+l)th extremum is a minimum, and vice versa.

An important advantage of using this kernel regression approach to identify patterns is

the fact that it ignores extrema that are "too local." For example, a simpler alternative is

to identify local extrema from the raw price data directly, i.e., identify a price P as a local

maximum if P,1 C Pt and P, > P+1, and vice versa for a local minimum. The problem

with this approach is that it identifies too many extrema, and also yields patterns that are

not visually consistent with the kind of patterns that technical analysts find compelling.

Once we have identified all of the local extrema in the window [t, t + I + d — 1], we can

proceed to check for the presence of the various technical patterns using the definitions of

14



Section A. This procedure is then repeated for the next window [t+i, t+l+d] ,and continues

until the end of the sample is reached at the window [T —i —d+ 1, T].

C. Empirical Examples

To see how our algorithm performs in practice, we apply it to the daily returns of a single

security, CTX, during the five-year period from 1992 to 1996. Figures 111—Vu plot occur-

rences of the five pairs of patterns defined in Section A that were identified by our algorithm.

Note that there were no rectangle bottoms detected for CTX during this period, so for com-

pleteness we substituted a rectangle bottom for CDO stock which occurred during the same

period.

In each of these graphs, the solid lines are the raw prices, the dashed lines are the kernel

estimators mh(•), the circles indicate the local extrema, and the vertical line marks date

t+l —1, the day that the final extremum occurs to complete the pattern.

Casual inspection by several professional technical analysts seems to confirm the ability of

our automated procedure to match human judgment in identifying the five pairs of patterns

in Section A. Of course, this is merely anecdotal evidence and not meant to be conclusive—

we provide these• figures simply to illustrate the output of a technical pattern recognition

algorithm based on kernel regression.

III. Is Technical Analysis Informative?

Although there have been many tests of technical analysis over the years, most of these tests

have focused on the profitability of technical trading rules.9 While some of these studies do

find that technical indicators can generate statistically significant trading profits, they beg

the question of whether or not such profits are merely the equilibrium rents that accrue to

investors willing to bear the risks associated with such strategies. Without specifying a fully

articulated dynamic general equilibrium asset-pricing model, it is impossible to determine

the economic source of trading profits.

Instead, we propose a more fundamental test in this section, one that attempts to gauge

the information content in the technical patterns of Section A by comparing the unconditional
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empirical distribution of returns with the coriesponding conditional empirical distribution,

conditioned on the occurrence of a technical pattern. If technical patterns are informative,

conditioning on them should alter the empirical distribution of returns; if the information

contained in such patterns has already been incorporated into returns, the conditional and

unconditional distribution of returns should be close. Although this is a weaker test of the

effectiveness of technical analysis—informativeness does not guarantee a profitable trading

strategy—it is, nevertheless, a natural first step in a quantitative assessment of technical

analysis.

To measure the distance between the two distributions, we propose two goodness-of-fit

measures in Section A. We apply these diagnostics to the daily returns of individual stocks

from 1962 to 1996 using a procedure described in Sections B to D, and the results are

reported in Sections E and F.

A. Goodness-of-Fit Tests

A simple diagnostic to test the informativeness of the ten technical patterns is to compare the

quantiles of the conditional returns with their unconditional counterparts. If conditioning on

these technical patterns provides no incremental information, the quantiles of the conditional

returns should be similar to those of unconditional returns. In particular, we compute the

deciles of unconditional returns and tabulate the relative frequency 5 of conditional returns

falling into decile j of the unconditional returns, j= 1,. . ., 10:

number of conditional returns in decile
15

total number of conditional returns

Under the null hypothesis that the returns are independently and identically distributed and

the conditional and unconditional distributions are identical, the asymptotic distributions of

S and the corresponding goodness-of-fit test statistic Q are given by:

—0.10) Qi Af(0, 0.10(1—0.10)) (16)

Q (nj_0J0n)2 (17)
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where nj is the number of observations that fall in decile j and n is the total number of

observations (see, for example, DeGroot (1986)).

Another comparison of the conditional and unconditional distributions of returns is pro-

vided by the Kolmogorov-Smirnov test. Denote by {Z1}1 and {Z2}1 two samples that

are each independently and identically distributed with cumulative distribution functions

Fi(z) and F2(z), respectively. The Kolmogorov-Smirnov statistic is designed to test the null

hypothesis that F1 = F2, and is based on the empirical cumulative distribution functions N

of both samples:

i=1,2 (18)
k=i

where 1(.) is the indicator function. The statistic is given by the expression:

7m1,n2
=

(
n1n2

)1/2 sup Ei(z) —fr2(z)I . (19)
Ti1 + n2

Under the null hypothesis F1 = F2, the statistic 'y,,22 should be small. Moreover, Smirnov

(1939a, 1939b) derives the limiting distribution of the statistic to be:

lim Prob( 'y1,2 x) = E (_1)k exp(—2k2x2) , x> 0 (20)
mm(ni ,fl2)—*oC k=—oo

An approximate a-level test of the null hypothesis can be performed by computing the

statistic and rejecting the null if it exceeds the upper lOOa-th percentile for the null distri-

bution given by (20) (see Hollander and Wolfe (1973, Table A.23), Csáki (1984), and Press

et al. (1986, Chapter 13.5)).

Note that the sampling distributions of both the goodness-of-fit and Kolmogorov-Smirnov

statistics are derived under the assumption that returns are independently and identically

distributed, which is not plausible for financial data. We attempt to address this prob-

lem by normalizing the returns of each security, i.e., by subtracting its mean and dividing

by its standard deviation (see Section C), but this does not eliminate the dependence or

heterogeneity. We hope to extend our analysis to the more general non-lID case in future
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research.

B. The Data and Sampling Procedure

We apply the goodness-of-fit and Kolmogorov-Smirnov tests to the daily returns of indi-

vidual NYSE/AMEX and Nasdaq stocks from 1962 to 1996 using data from the Center for

Research in Securities Prices (CRSP). To ameliorate the effects of nonstationarities induced

by changing market structure and institutions, we split the data into NYSE/AMEX stocks

and Nasdaq stocks and into seven five-year periods: 1962 to 1966, 1967 to 1971, and so on.

To obtain a broad cross-section of securities, in each five-year subperiod, we randomly select

ten stocks from each of five market-capitalization quintiles (using mean market-capitalization

over the subperiod), with the further restriction that at least 75 percent of the price obser-

vations must be non-missing during the subperiod.'° This procedure yields a sample of 50

stocks for each subperiod across seven subperiods (note that we sample wjth replacement,

hence there may be names in common across subp eriods).

As a check on the robustness of our inferences, we perform this sampling procedure twice

to construct two samples, and apply our empirical analysis to both. Although we report

results only from the first sample to conserve space, the results of the second sample are

qualitatively consistent with the first and are available upon request.

C. Computing Conditional Returns

For each stock in each subperiod, we apply the procedure outlined in Section II to identify

all occurrences of the ten patterns deBited in Section A. For each pattern detected, we com-

pute the one-day continuously compounded return d days after the pattern has completed.

Specifically, consider a window of prices {P} from t to t+l +d— 1, and suppose that the

identified pattern p is completed at t + I —1. Then we take the conditional return R' as

log(1 + R+1÷i). Therefore, for each stock, we have ten sets of such conditional returns,

each conditioned on one of the ten patterns of Section A.

For each stock, we construct a sample of unconditional continuously compounded returns

using non-overlapping intervals of length r, and we compare the empirical distribution func-

tion of these returns with those of the conditional returns. To facilitate such comparisons,
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we standardize all returns—both conditional and unconditional—by subtracting means and

dividing by standard deviations, hence:

— — Mean[Rt]
21it —

SD[Rj]
'

where the means and standard deviations are computed for each individual stock within each

subperiod. Therefore, by construction, each normalized return series has zero mean and unit

variance.

Finally, to increase the power of our goodness-of-fit tests, we combine the normalized re-

turns of all 50 stocks within each subperiod; hence for each subperiod we have two samples—

unconditional and conditional returns—and from these we compute two empirical distribu-

tion functions that we compare using our diagnostic test statistics.

D. Conditioning on Volume

Given the prominent role that volume plays in technical analysis, we also construct returns

conditioned on increasing or decreasing volume. Specifically, for each stock in each subperiod,

we compute its average share-turnover during the first and second halves of each subperiod,

r1 and r2, respectively." If i-, > 1.2 x r2, we categorize this as a "decreasing volume" event;

if r2 > 1.2 x r1, we categorize this as an "increasing volume" event. If neither of these

conditions holds, then neither event is considered to have occurred.

Using these events, we can construct conditional returns conditioned on two pieces of

information: the occurrence of a technical pattern and the occurrence of increasing or de-

creasing volume. Therefore, we shall compare the empirical distribution of unconditional

returns with three conditional-return distributions: the distribution of returns conditioned

on technical patterns, the distribution conditioned on technical patterns and increasing vol-

ume, and the distribution conditioned on technical patterns and decreasing volume.

Of course, other conditioning variables can easily be incorporated into this procedure,

though the "curse of dimensionality" imposes certain practical limits on the ability to esti-

mate multivariate conditional distributions nonparametrically.
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E. Summary Statistics

In Tables I and II, we report frequency counts for the number of patterns detected over the

entire 1962 to 1996 sample, and within each subperiod and each market-capitalization quin-

tile, for the ten patterns defined in Section A. Table I contains results for the NYSE/AMEX

stocks, and Table II contains corresponding results for Nasdaq stocks.

Table I shows that the most common patterns across all stocks and over the entire sam-

ple period are double tops and bottoms (see the row labelled "Entire"), with over 2,000

occurrences of each. The second most common patterns are the head-and-shoulders and

inverted head-and-shoulders, with over 1,600 occurrences of each. These total counts corre-

spond roughly to four to six occurrences of each of these patterns for each stock during each

five-year subperiod (divide the total number of occurrences by 7 x 50), not an unreasonable

frequency from the point of view of professional technical analysts. Table I shows that most

of the ten patterns are more frequent for larger stocks than for smaller ones, and that they

are relatively evenly distributed over the five-year subperiods. When volume trend is con-

sidered jointly with the occurrences of the ten patterns, Table I shows that the frequency

of patterns is not evenly distributed between increasing (the row labelled "r(,)") and de-

creasing (the row labelled "r(N)") volume-trend cases. For example, for the entire sample

of stocks over the 1962 to 1996 sample period, there are 143 occurrences of a broadening

top with decreasing volume trend, but 409 occurrences of a broadening top with increasing

volume trend.

For purposes of comparison, Table I also reports frequency counts for the number of pat-

terns detected in a sample of simulated geometric Brownian motion, calibrated to match the

mean and standard deviation of each stock in each five-year subperiod.12 The entries in the

row labelled "Sim. GBM" show that the random walk model yields very different implications

for the frequency counts of several technical patterns. For example, the simulated sample

has only 577 head-and-shoulders and 578 inverted-head-and-shoulders patterns, whereas the

actual data have considerably more, 1,611 and 1,654, respectively. On the other hand, for

broadening tops and bottoms, the simulated sample contains many more occurrences than

the actual data, 1,227 and 1,028 as compared to 725 and 748, respectively. The number of
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triangles is roughly comparable across the two samples, but for rectangles and double tops

and bottoms, the differences are dramatic. Of course, the simulated sample is only one real-

ization of geometric Brownian motion, so it is difficult to draw general conclusions about the

relative frequencies. Nevertheless, these simulations point to important differences between

the data and independently and identically distributed lognormal returns.

To develop further intuition for these patterns, Figures VIII and IX display the cross-

sectional and time-series distribution of each of the ten patterns for the NYSE/AMEX and

Nasdaq samples, respectively. Each symbol represents a pattern detected by our algorithm,

the vertical axis is divided into five quintiles, the horizontal axis is calendar time, and

alternating symbols (diamonds and asterisks) represent distinct subperiods. These graphs

show that the distribution of patterns is not clustered in time or among a subset of securities.

Table II provides the same frequency counts for Nasdaq stocks, and despite the fact that

we have the same number of stocks in this sample (50 per subperiod over seven subperiods),

there are considerably fewer patterns detected than in the NYSE/AMEX case. For example,

the Nasdaq sample yields only 919 head-and-shoulders patterns, whereas the NYSE/AMEX

sample contains 1,611. Not surprisingly, the frequency counts for the sample of simulated

geometric Brownian motion are similar to those in Table I.

Tables III and IV report suumiary statistics—means, standard deviations, skewness, and

excess kurtosis—of unconditional and conditional normalized returns of NYSE/AMEX and

Nasdaq stocks, respectively. These statistics show considerable variation in the different re-

turn populations. For example, the first four moments of normalized raw returns are 0.000,

1.000, 0.345, and 8.122, respectively. The same four moments of post-BTOP returns are

—0.005, 1.035, —1.151, and 16.701, respectively, and those of post-DTOP returns are 0.017,

0.910, 0.206, and 3.386, respectively. The differences in these statistics among the ten con-

ditional return populations, and the differences between the conditional and unconditional

return populations, suggest that conditioning on the ten technical indicators does have some

effect on the distribution of returns.
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F. Empirical Results

Tables V and Vi reports the results of the goodness-of-fit test (16)—(l7) for our sample of

NYSE and AMEX (Table V) and Nasdaq (Table VI) stocks, respectively, from 1962 to 1996

for each of the ten technical patterns. Table V shows that in the NYSE/AMEX sample,

the relative frequencies of the conditional returns are significantly different from those of the

unconditional returns for seven of the ten patterns considered. The three exceptions are the

conditional returns from the BBOT, TTOP, and DBOT patterns, for which the p-values of

the test statistics Qare 5.1 percent, 21.2 percent, and 16.6 percent respectively. These results

yield mixed support for the overall efficacy of technical indicators. However, the results of

Table VI tell a different story: there is overwhelming significance for all ten indicators in the

Nasdaq sample, with p-values that are zero to three significant digits, and test statistics Q

that range from 34.12 to 92.09. In contrast, the test statistics inTable V range from 12.03

to 50.97.

One possible explanation for the difference between the NYSE/AMEX and Nasdaq

samples is a difference in the power of the test because of different sample sizes. If the

NYSE/AMEX sample contained fewer conditional returns, i.e., fewer patterns, the corre-

sponding test statistics might be subject to greater sampling variation and lower power.

However, this explanation can be ruled out from the frequency counts of Tables I and II—

the number of patterns in the NYSE/AMEX sample is considerably larger than those of the

Nasdaq sample for all ten patterns. Tables V and VI seem to suggest important differences

in the informativeness of technical indicators for NYSE/AMEX and Nasdaq stocks.

Table VII and VIII report the results of the Kolmogorov-Smirnov test (19) of the equality

of the conditional and unconditional return distributions for NYSE/AMEX (Table VII) and

Nasdaq (Table VIII) stocks, respectively, from 1962 to 1996, in five-year subperiods, and

in market-capitalization quintiles. Recall that conditional returns are defined as the one-

day return starting three days following the conclusion of an occurrence of a pattern. The

p-values are with respect to the asymptotic distribution of the Kolmogorov-Smirnov test

statistic given in (20).

Table VII shows that for NYSE/AMEX stocks, five of the ten patterns—HS, BBOT,
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RTOP, RBOT, and DTOP—yield statistically significant test statistics, with p-values rang-

ing from 0.000 for RBOT to 0.021 for DTOP patterns. However, for the other five patterns,

the p-values range from 0.104 for IRS to 0.393 for DBOT, which implies an inability to

distinguish between the conditional and unconditional distributions of normalized returns.

When we condition on declining volume trend as well, the statistical significance declines

for most patterns, but increases the statistical significance of TBOT patterns. In contrast,

conditioning on increasing volume trend yields an increase in the statistical significance of

BTOP patterns. This difference may suggest an important role for volume trend in TBOT

and BTOP patterns. The difference between the increasing and decreasing volume-trend

conditional distributions is statistically insignificant for almost all the patterns (the sole

exception is the TBOT pattern). This drop in statistical significance may be due to a lack

of power of the K-S test given the relatively small sample sizes of these conditional returns

(see Table I for frequency counts).

Table VIII reports corresponding results for the Nasdaq sample and as in Table VI, in

contrast to the NYSE/AMEX results, here all the patterns are statistically significant at

the 5 percent level. This is especially significant because the the Nasdaq. sample exhibits far

fewer patterns than the NYSE/AMEX sample (see Tables I and II), hence the K-S test is

likely to have lower power in this case.

As with the NYSE/AMEX sample, volume trend seems to provide little incremental

information for the Nasdaq sample except in one case: increasing volume and BTOP. And

except for the TTOP pattern, the K-S test still cannot distinguish between the decreasing

and increasing volume-trend conditional distributions, as the last pair of rows of Table Viii's

first panel indicates.

IV. Monte Carlo Analysis

Tables IX and X contain bootstrap percentiles for the Kolmogorov-Smirnov test of the equal-

ity of conditional and unconditional one-day return distributions for NYSE/AMEX and Nas-

daq stocks, respectively, from 1962 to 1996, and for market-capitalization quintiles, under

the null hypothesis of equality, For each of the two sets of market data, two sample sizes,
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in1 and in2, have been chosen to span the range of frequency counts of patterns reported

in Tables I and II. For each sample size m, we resample one-day normalized returns (with

replacement) to obtain a bootstrap sample of in1 observations, compute the Kolmogorov-

Smirnov test statistic (against the entire sample of one-day normalized returns), and repeat

this procedure 1,000 times. The percentiles of the asymptotic distribution are also reported

for comparison under the column "-y".

Tables IX and X show that for a broad range of sample sizes and across size quintiles,

subperiod, and exchanges, the bootstrap distribution of the Kohnogorov-Smirnov statistic

is well approximated by its asymptotic distribution (20).

V. Conclusion

In this paper, we have proposed a new approach to evaluating the efficacy of technical anal-

ysis. Based on smoothing techniques such as nonparametric kernel regression, our approach

incorporates the essehce of technical analysis: to identify regularities in the time series of

prices by extracting nonlinear patterns from noisy data. While human judgment is still

superior to most computational algorithms in the area of visual pattern recognition, recent

advances in statistical learning theory have had successful applications in fingerprint identi-

fication, handwriting analysis, and face recognition. Technical analysis may well be the next

frontier for such methods.

When applied to many stocks over many time periods, we find that certain technical

patterns do provide incremental information, especially for Nasdaq stocks. While this does

not necessarily imply that technical analysis can be used to generate "excess" trading profits,

it does raise the possibility that technical analysis can add value to the investment process.

Moreover, our methods suggest that technical analysis can be improved by using auto-

mated algorithms such as ours, and that traditional patterns such as head-and-shoulders and

rectangles, while sometimes effective, need not be optimal. In particular, it may be possible

to determine "optimal patterns" for detecting certain types of phenomena in financial time

series, e.g., an optimal shape for detecting stochastic volatility or changes in regime. More-

over, patterns that are optimal for detecting statistical anomalies need not be optimal for
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trading profits, and vice versa. Such considerations may lead to an entirely new branch of

technical analysis, one based on selecting pattern recognition algorithms to optimize specific

objective functions. We hope to explore these issues more fully in future research.
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Footnotes

1A similar approach has been proposed by Chang and Osler (1994) and Osler and Chang
(1995) for the case of foreign-currency trading rules based on a head-and-shouiders pat-
tern. They develop an algorithm for automatically detecting geometric patterns in price or
exchange data by looking at properly defined local extrema.

2See, for example, Beymer and Poggio (1996), Poggio and Beymer (1996), and Riesenhu-
ber and Poggio (1997).

3flespite the fact that K(x) is a probability density function, it plays no probabilistic
role in the subsequent analysis—it is merely a convenient method for computing a weighted
average, and does not imply, for example, that X is distributed according to K(x) (which
would be a parametric assumption).

4However, there are other bandwidth-selection methods that yield the same asymptotic
optimality properties but which have different implications for the finite-sample properties
of kernel estimators. See Hãrdle (1990) for further discussion.

5Specifically, we produced fitted curves for various bandwidths and compared their ex-
trema to the original price series visually to see if we were fitting more "noise" than "signal,"
and asked several professional technical analysts to do the same. Through this informal pro-
cess, we settled on the bandwidth of 0.3 x h and used it for the remainder of our analysis.
This procedure was followed before we performed the statistical analysis of Section III, and
we made no revision to the choice of bandwidth afterwards.

6See Simonoff (1996) for a discussion of the problems with kernel estimators and alter-
natives such as local polynomial regression.

TAfter all, for two consecutive maxima to be local maxima, there must be a local minimum
in between, and vice versa for two consecutive minima.

81f we are willing to place additional restrictions on me),. e.g., linearity, we can obtain
considerably more accurate inferences even for partially completed patterns in any fixed
window.

9For example, Chang and Osler (1994) and Osler and Chang (1995) propose an algorithm
for automatically detecting head-and-shoulders patterns in foreign exchange data by looking
at properly defined local extrema. To assess the efficacy of a head-and-shoulders trading rule,
they take a stand on a class of trading strategies and compute the profitability of these across
a sample of exchange rates against the U.S. dollar. The null return distribution is computed
by a bootstrap that samples returns randomly from the original data so as to induce temporal
independence in the bootstrapped time series. By comparing the actual returns from trading
strategies to the bootstrapped distribution, the authors find that for two of the six currencies
in their sample (the yen and the Deutsche mark), trading strategies based on a head and
shoulders pattern can lead to statistically significant profits. See, also, Neftci and Policano
(1984), Pruitt and White (1988), and Brock, Lakonishok, and LeBaron (1992).

'°If the first price observation of a stock is missing, we set it equal to the first non-missing
price in the series. If the t-th price observation is missing, we set it equal to the first
non-missing price prior to t.

11For the Nasdaq stocks, r1 is the average turnover over the first third of the sample, and
r2. is the average turnover over the final third of the sample.
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12[u particular, let the price process satisfy

dP(t) = jzP(t) dt + cP(t) dW(t) (22)

where W(t) is a standard Brownian motion. To generate simulated prices for a single security
in a given period, we estimate the security's drift and diffusion coefficients by maximum
likelihood and then simulate prices using the estimated parameter values. An independent
price series is simulated for each of the 350 securities in both the NYSE/AMEX and the
Nasdaq samples. Finally, we use our pattern recognition algorithm to detect the occurrence
of each of the ten patterns in the simulated price series.
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Figure VI. Rectaig1e tops and bottoms.
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Figure VIII. Distribution of patterns in NYSE/AMEX sample.
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Figure VIII. (continued).
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Figure IX. Distribution of patterns in NASDAQ sample.
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Table I

Frequency counts for 10 technical indicators detected among NYSE/AMEX stocks from 1962 to
1996, in 5-year subperiods, in size quintiles, and in a sample of simulated geometric Brownian
motion. In each 5-year subperiod, 10 stocks per quintile are selected at random among stocks with
at least 80% non-missing prices, and each stock's price history is scanned for any occurrence of the
following 10 technical indicators within the subperiod: head-and-shoulders (HS), inverted head-
and-shoulders (IRS), broadening top (BTOP), broadening bottom (BBOT), triangle top (TTOP),
triangle bottom (TBOT), rectangle top (RTOP), rectangle bottom (RBOT), double top (DTOP),
and double bottom (DBOT). The 'Sample' column indicates whether the frequency counts are
conditioned on decreasing volume trend ('r(\)'), increasing volume trend ("r(4'),unconditional
('Entire'), or for a sample of simulated geometric Brownian motion with parameters calibrated to
match the data ('Sim. GBM').

Sample Raw US IHS BTOP BBOT TTOP TBOT RTOP RUOT DTOP DBOT

All Stocks, 1962 to 1996
Entire 423,556 1611 1654 725 748 1294 1193 1482 1616 2076 2075
Sim. GEM 423,556 577 578 1227 1028 1049 1176 122 113 535 574
r(N) — 655 593 143 220 666 710 582 637 691 974
r(,') — 553 614 409 337 300 222 523 552 776 533

.

Smallest Quintile, 1962 to 1996 .

Entire 84,363 182 181 78 97 203 159 265 320 261 271
Sim. GBM 84,363 82 99 279 256 269 295 18 16 129 127
,-(.,.) — 90 Si 13 42 122 119 113 131 78 161
r(i') — 58 76 51 37 41 22 99 120 124 64

. .
2nd Quintile, 1962 to 1996

Entire 83,986 309 321 146 150 255 228 299 322 372 420
Sim. GEM 83,986 108 105 291 251 261 278 20 17 106 126
T(N) — 133 126 25 48 135 147 130 149 113 211
,-(,) — 112 126 90 63 55 39 104 110 153 107

3rd Quiotile, 1962 to 1996
Entire 84,420 361 388 145 161 291 247 334 399 458 443
Sim. GEM 84,420 122 120 268 222 212 249 24 31 115 125
r(N) — 152 131 20 49 151 149 130 160 154 215
,-(,') — 125 146 83 66 67 44 121 142 179 106

4th Quintile, 1962 to 1996
Entire 84,780 332 317 176 173 262 255 259 264 424 420
Sim. GBM 84,780 143 127 249 210 183 210 35 24 116 122
,.('.,) — 131 115 36 42 138 145 85 97 144 184
r(,) — 110 126 103 89 56 55 102 96 147 118

Largest Quintile, 1962 to 1996
Entire 86,007 427 447 180 167 283 304 325 311 561 521
Sim. GEM 86,007 122 127 140 89 124 144 25 25 69 74
t(N) — 149 140 49 39 120 150 124 100 202 203

.
— 148 140 82 82 81 62 97 84 173 138



Table I (continued)

Sample Raw US IllS ETOP BBOT flOP TBOT aTOP RBOT DTOP DBOT

All Stocks, 1962 to 1966

• Entire 55,254 276 278
Sim. GBM 55,254 56 58

7(N) — 104 88
96 112

85 103 179 165
144 126 129 139
26 29 93 109
44 39 37 25

316 354 356 352
9 16 60 68

130 141 113 188
130 122 137 88

All Stocks, 1967 to 1971

Entire 60,299 179 175
Sim. GEM 60,299 92 70

7(N) — 68 64
r(,) — 71 69

112 134 227 172 115 117 239 258
167 148 150 180 19 16 84 77
16 45 126 111 42 39 80 143
68 57 47 29 41 41 87 53

All Stocks, 1972 to 1976

All Stocks, 1977 to 1981

— 101 104 28 30 93 104 70 95 109 124
— 89 94 51 62 46 40 73 68 116 85

All Stocks, 1987 to 1991
104 98
168 132
16 30
68 43

All Stocks, 1992 to 1996
Entire 62,191 299 336
Sim. GEM 62,191 88 78

r(N) — 109 132
— 106 105

102 102 173 194 292 315 389 368
132 124 143 150 18 26 56 88

17 24 80 110 123 136 149 145
58 42 50 35 92 96 143 104

Entire 59,915 152 162 82 93 165 136 171 182 218 223
Sim. GEM 59,915 75 85 183 154 156 178 16 10 70 71
7(N) — 64 55 16 23 88 78 60 64 53 97
r(,) — 54 62 42 :50 32 21 61 67 80 59

Entire 62,133 223 206 134 110 188 167 146 182 274 290
Sun. GUM 62,133 83 88 245 200 188 210 18 12 90 115

— 114
— 56

61
93

24
78

39 100
44 35

97
36

54
53

60
71

82
113

140
76

All Stocks, 1982 to 1986
Entire 61,984 242 256 106 108 182 190 182 207 313 299
Sim. GUM 61,984 115 120 188 144 152 169 31 23 99 87

Entire 61,780 240 241
Sim. GEM 61,780 68 79
7(N) — 95 89
r(,) — 81 79

180 169 260 259 287 285
131 150 11 10 76 68
86 101 103 • 102 105 137
53 36 73 87 100 68



Table II

Frequency counts for 10 technical indicators detected among NASDAQ stocks from 1962 to 1996,
in 5-year subperiods, in size quintiles, and in a sample of simulated geometric Brownian motion.
In each 5-year subperiod, 10 stocks per quintile are selected at random among stocks with at
least 80% non-missing prices, and each stock's price history is scanned for any occurrence of the
following 10 technical indicators within the subperiod: head-and-shoulders (HS), inverted head-
and-shoulders (IRS), broadening top (BTOP), broadening bottom (BBOT), triangle top (TTOP),
triangle bottom (TBOT), rectangle top (RTOP), rectangle bottom (RBOT), double top (DTOP),
and double bottom (DBOT). The 'Sample' column indicates whether the frequency counts are
conditioned on decreasing volume trend ('r(N)'), increasing volume trend ('r(4'), unconditional
('Entire'), or for a sample of simulated geometric Brownian motion with parameters calibrated to
match the data ('Sim. GBM').

Sample Raw 115 1115 ETOP BBOT flop TBOT ETOP RBOT DTOP DBOT

All Stocks, 1962 to 1996
Entire 411,010 919 817 414 508 850 789 1134 1320 1208 1147
Sun. GBM 411,010 434 447 1297 1139 1169 1309 96 91 567 579
r(N)

— 408 268 69 133 429 460 488 550 339 580
r(.,) — 284 325 234 209 185 125 391 461 474 229

Smallest Quintie, 1962 to 1996
Entire 81,754 84 64 41 73 111 93 165 218 113 125
Shn. GEM 81,754 85 84 341 289 334 367 11 12 140 125

t(N) — 36 25 6 20 56 59 77 102 31 81
r(,) — 31 23 31 30 24 15 59 85 46 17

2nd Quintile, 1962 to 1996
Entire 81,336 191 138 68 88 161 148 242 305 219 176
Sim. GBM 81,336 67 84 243 225 219 229 24 12 99 124
7(N) — 94 51 11 28 86 109 111 131 69 101
r(,')

— 66 57 46 38 45 22 85 120 90 42

3rd Quintile, 1962 to 1996

Entire 81,772 224 186 105 121 183 155 235 244 279 267
Sim. GEM 81,772 69 86 227 210 214 239 15 14 105 100
r(..)

— 108 66 23 35 87 91 90 84 78 145

r(i')
— 71 79 56 49 39 29 84 86 122 58

4th Quintile, 1962 to 1996

Entire 82,727 212 214 92 116 187 179 296 303 289 297
Sim. GBM 82,727 104 92 242 219 209 255 23 26 115 97
r(,.)

— 88 68 12 26 101 101 127 141 77 143

r(,')
— 62 83 57 56 34 22 104 93 118 66

Largest Quintile, 1962 to 1996

Entire 83,421 208 215 108 110 208 214 196 250 308 282
Sim. GEM 83,421 109 101 244 196 193 219 23 27 108 133
7(N) — 82 58 17 24 99 100 83 92 84 110
i-(,) 54 83 44 36 43 37 59 77 98 46



Table II (continued)

Sample Raw ES IHS BTOP BBOT flop TBOT RTOP RBOT DTOP DBOT

All Stocks, 1962 to 1966
Entire 55,969 274 268
Slim. GBM 55,969 69 63

— 129 99
— 83 103

Entire 60,563 115 120
Slut GBM 60,563 58 61
'-(N) — 61 29
T(/) — 24 57

Entire 61,972 56 53
Sim. GBM 61,972 90 84

— 7 7— 6 6

Entire 61,110 71 64
Sim. GEM 61,110 .. 86 90

T(N) — 37 19
— 21 25

72
163
10
48

99 182 144 288 329 326 342
123 137 149 24 22 77 90
23 104 98 115 136 96 210
51 37 23 101 116 144 64

All Stocks, 1967 to 1971
104 123 227 171 65 83 196 200
194 184 181 188 9 8 90 83
15 40 127 123 26 39 49 137
71 51 45 19 25 16 86 17

50
229
11
33

All Stocks, 1972 to 1976

All Stocks, 1987 to 1991

All Stocks, 1992 to 1996

155
88
69
55

Entire 59,088 211 162
Sim. GEM 59,088 40 55
'-(N) — 90 64— 84 71

87
198

24
52

Entire 51,446 34 30 14 30 29 28 51 55 55 58
Sim. GBM 51,446 32 37 115 113 107 110 5 6 46 46
'-(N) — 5 4 0 4 5 7 12 8 3 8
'-(A) — 8 7 1 2 2 0 5 12 8 3

All Stocks, 1977 to 1981
41 36 52 73 57 65 89 96

236 165 176 212 19 19 110 98
1 2 4 8 12 12 7 9
5 1 4 0 5 8 7 6

All Stocks, 1982 to 1986

Entire 60,862 158 120
Sim. GEM 60,862 59 57

— 79 46
r(,) — 58 56

162 168 147 174 23 21 97 98
8 14 .46 58 45 52 40 4824. 18 26 22 42 42 38 24

61 120 109 265 312 177
187 205 244 7 7 79
19 73 69 130 140 50
30 26 28 100 122 89

115 143 157 299 361 245 199
199 216 232 9 8 68 76
31 70 97 148 163 94 99
56 45 33 113 145 102 60



Table III

Summary statistics (mean, standard deviation, skewness, and excess kurtosis) of raw and condi-
tional 1-day normalized returns of NYSE/AMEX stocks from 1962 to 1996, in 5-year subperiods,
and in size quintiles. Conditional returns are defined as the daily return three days following
the conclusion of an occurrence of one of 10 technical indicators: head-and-shoulders (HS), in-
verted head-and-shoulders (IllS), broadening top (BTOP), broadening bottom (BBOT), triangle
top (TTOP), triangle bottom (TROT), rectangle top (RTOP), rectangle bottom (RBOT), double
top (DTOP), and double bottom (DBOT). All returns have been normalized by subtraction of
their means and division by theft standard deviations.

Moment Raw 115 IRS BTOP BBOT flop TBOT RTOP RBOT DTOP DEOT

An Stocks, 1962 to 1996
Mean
S.D.
Skew
Kurt

—0.000
1.000
0.345
8.122

—0.038
0.867
0.135
2.428

0.040
0.937
0.660
4.527

—0.005 —0.062 0.021 —0.009
1.035 0.979 0.955 0.959

—1.151 0.090 0.137 0.643
16.701 3.169 3.293 7.061

0.009
0.865

—.0.420
7.360

0.014 0.017
0.883 0.910
0.110 0.206
4.194 3.386

0.0O1
0.999
0.460
7.374

Smallest Quintile, 1962 to 1996
Mean
S.D.
Skew
Kurt

—0.000
1.000
0697

10.873

—0.014-
0.854
0.802
3.870

0.036
1.002
1.337
7.143

—0.093 —0.188 0.036 —0.020
0.940 0.850 0.937 1.157

—1.771 —0.367 0.861 2.592
6,701 0.575 4.185 12.532

0.037
0.833

—0.187
1.793

—0.093 0.043
0.986 0.950
0.445 0.511
4.384 2.581

—0.055
0.962
0.002
3.989

Mean
S.D.
Skew
Kurt

—0.000
1.000
0.392
7.836

—0.069
0.772
0.223
0.657

0.144
1.031
1.128
6.734

2nd Qthntile, 1962 to 1996
0.061 —0.113 0.003 0.035
1.278 1.004 0.913 0.965

—3.296 0.485 —0.529 0.166
32.750 3.779 3.024 4.987

0.018
0.979

—1.375
17.040

0.019 0.067
0.868 0.776
0.452 0.392
3.914 2.151

.

—0.011
L069
1.728

15.544

Mean
S.D.
Skew
Kurt

—0.000
1.000
0.246
7.466

—0.048
0.888

—0.465
3.239

—0.043
0.856
0.107
1.612

3rd QuintiIe, 1962 to 1996
—0.076 —0.056 0.036 0.012

0.894 0.925 0.973 0.796
—0.023 0.233 0.538 0.166

1.024 0.611 2.995 0.586

0.075
0.798
0.678
3.010

0.028 —0.039
0.892 0.956

—0.618 0.013
4.769 .4.517

—0.034
1.026

—0.242
3.663

Mean
S.D.
Skew
Kurt

—0.000
1.000
0.222
6.452

—0.012
0.964
0.055
1.444

0.022
0.903
0.592
1.745

4th Quintile, 1962 to 1996
0.115 0.028 0.022 —0.014
0.990 1.093 0.986 0.959
0.458 0.537 —0.217 —0.456
1.251 2.168 4.237 8.324

—0.113
0.854

—0.415
4.311

0.065 0.015
0.821 0.858
0.820 0.550

. 3.632 1.719

—0.006
0.992

—0.062
4.691

Largest Quintile, 1962 to 1996
Mean
S.D.
Skew
Kurt

—0.000
1.000
0.174
7.992

—0.038
0.843
0.438
2.621

0.054
0.927
0.182
3.465

—0.081 —0.042 0.010 —0.049
0.997 0.951 0.964 0.965
0.470 —1.099 0.089 0.357
3.275 6.603 2.107 2.509

0.009
0.850

—0.167
0.816

0.060 0.018
0.820 0.971

—0.140 0.011
3.179 3.498

0.067
0.941
0.511
5.035



Table III (continued)

Moment Raw H5 IHS ETOP BBOT flOP TBOT RTOP IthOT DTOP DBOT

All Stocks, 1962 to 1966

—0.007 0.011 0.095 —0.114 —0.067 0.050 0.005 0.011 —0.013
1.002 1.109 0,956 0.924 0.801 0.826 0.934 0.850 1.026
0.441 0.372 —0.165 0.473 —1.249 0.231 0.467 0.528 0.867
6.128 2.566 2.735 3.208 5.278 1.108 4.234 1.515 7.400

0.033 —0.091 —0.040 0.053 0.003 0.040 —0.020 —0.022 —0017
0.895 0.955 0.818 0.857 0.981 0.894 0.833 0.873 1.052
0.272 0.108 0.231 0.165 —1.216 0.293 0.124 —1.184 —0.368
4.395 2.247 1.469 4.422 9.586 1.646 3.973 4.808 4.297

0.069 —0.231 —0.272 0.122 0.041 0.082 0.011 0.102 —0.016
1.021 1.406 1.187 0.953 1.078 0.814 0.996 0.960 1.035
1.305 —3.988 —0.502 —0.190 2.460 —0.167 —0.129 —0.091 0.379
6.684 27.022 3.947 1.235 12.883 0.506 6.399 1.507 3.358

0.090 0.159 0.079 —0.033 —0.039 —0.041 0.019 —0.071 —0.100
0.925 0.825 1.085 1.068 1.011 0.961 0.814 0.859 0.962
0.462 0.363 1.151 —0.158 1.264 —1.337 —0.341 —0.427 —0.876
1.728 0.657 5.063 2.674 4.826 17.161 1.400 3.416 5.622

All Stocks, 1967 to 1971
0.079 —0.035 —0.056 0.025 0.057 —0.101 0.110 0.093 0.079
0.944 0.793 0.850 0.885 0.886 0.831 0.863 1.083 0.835
0.666 0.304 0.085 0.650 0.697 —1.393 0.395 1.360 0.701
2.725 0.706 0.141 3.099 1.659 8.596 3.254 4.487 1.853

All Stocks, 1972 to 1976
0.043 0.101 —0.138 —0.045 —0.010 —0.025 —0.003 —0.051 —0.108
0.810 0.985 0.918 0.945 0.922 0.870 0.754 0.914 0.903
0.717 —0.699 0.272 —1.014 0.676 0.234 0.199 0.056 —0.366
1.565 6.562 1.453 5.261 4.912 3.627 2.337 3.520 5.047

All Stocks, 1977 to 1981
—0.040 0.076 —0.114 0.135 —0.050 —0.004 0.026 0.042 0.178

0.863 1.015 0.989 1.041 1.011 0.755 0.956 0.827 1.095
0.052 1.599 —0.033 0.776 0.110 —0.084 0.534 0.761 2.214
1.048 4.961 —0.125 2.964 0.989 1.870 2.184 2.369 15.290

All Stocks, 1982 to 1986

Mean —0.000 0.070
S.D. 1.000 0.797
Skew 0.563 0.159
Kurt 9.161 0.612

Mean —0.000 —0.044
S.D. 1.000 0.809
Skew 0.342 0.754
Kurt 5.810 3.684

Mean —0.000 —0.035
S.D. 1.000 1.015
Skew 0.316 —0.334
Kurt 6.520 2.286

Mean —0.000 —0.138
S.D. 1.000 0.786
Skew 0.466 —0.304
Kurt 6.419 1.132

Mean —0.000 —0.099
S.D. 1.000 0.883
Skew 0.460 0.464
Kurt 6.799 2.280

Mean —0.000 —0.037
S.D. 1.000 0.848
Skew —0.018 —0.526
Kurt 13.478 3.835

Mean —0.000 —0.014
S.D. 1.000 0.935
Skew 0.308 0.545
Kurt 8.683 2.249

All Stocks, 1987 to 1991

All Stocks, 1992 to 1996



Table IV

Summary statistics (mean, standard deviation, skewness, and excess kurtosis) of raw and condi-
tional 1-day normalized returns of NASDAQ stocks from 1962 to 1996, in 5-year subperiods, and
in size quintiles. Conditional returns are defined as the daily return three days following the con-
clusion of an occurrence of one of 10 technical indicators: head-and-shoulders (HS), inverted head-

and-shoulders (IHS), broadening top (BTOP), broadening bottom (BBOT), triangle top (TTOP),
triangle bottom (TBOT), rectangle top (RTOP), rectangle bottom (RBOT), double top (DTOP),
and double bottom (DBOT). All returns have been normalized by subtraction of their means and
division by their standard deviations.

Moment Raw 115 IllS BTOP BBOT flOP TBOT ICOP REOT DTOP DROT

All Stocks, 1962 to 1996

Mean
S.D.
Skew
Kurt

0.000
1.000
0.608

12.728

—0.016 0.042
0.907 0.994

—0.017 1.290
3.039 8.774

—0.009 0.009 —0.020 0.017
0.960 0.995 0.984 0.932
0.397 0.586 0.895 0.716
3.246 2.783 6.692 3.844

0.052
0.948
0.710
5.173

0.043
0.929
0.755
4.368

0.003
0.933
0.405
4.150

—0.035
0.880

—0.104
2.052

Mean
S.D.
Skew
Kurt

—0.000
1.000
0.754

15.859

0.018 —0.032
0.845 1.319
0.325 1.756
1.096 4.221

Smallest Quintile, 1962 to 1996
0.087 —0.153 0.059 0.108
0.874 0.894 1.113 1.044

—0.239 —0.109 2.727 2.300
1.490 0.571 14.270 10.594

0.136
1.187
1.741
8.670

0.013
0.982
0.199
1.918

0.040
0.773
0.126
0.127

0.043
0.906

—0.358
0.730

Mean
S.D.
Skew
Kurt

—0.000
1.000
0.844

16.738

—0.064 0.076
0.848 0.991
0.406 1.892
2,127 11.561

2nd Quintile, 1962 to 1996
—0.109 —0.093 —0.085 —0.038

1.106 1.026 0.805 0.997
—0.122 0.635 0.036 0.455

2.496 3.458 0.689 1.332

—0.066
0.898

—0.579•
2.699

—0.015
0.897
0.416
3.871

0.039
1.119
1.196
3.910

—0.034
0.821
0.190
0.777

. 3rd Quintile, 1962 to 1996
Mean
S.D.
Skew
Kurt

—0.000
1.000
0.698

12.161

0.033 0.028
0.933 0.906
0.223 0.529
1.520 1.526

0.078 0.210 —0.030 0.068
0.931 0.971 0.825 1.002
0.656 0.326 0.539 0.442
1.003 0.430 1.673 1.038

0.117
0.992
0.885
2.908

0.210
0.970
0.820
4.915

—0.109
0.997
0.163
5.266

—0.075
0.973
0.123
2.573

4th Quintile, 1962 to 1996
Mean
S.D.
Skew
Kurt

0.000
1.000
0.655

11.043

—0.079 0.037
0.911 0.957

—0.456 2.671
2.525 19.593

—0.006 —0.044 —0.080 0.007
0.992 0.975 1.076 0.824

—0.174 0.385 0.554 0.717
2.163 1.601 7.723 3.930

0.084
0.890
0.290
1.555

0.044
0.851
1.034
2.982

0.038
0.857
0.154
2.807

—0.048
0.819

—0.149
2.139

Largest Quintile, 1962 to 1996
Mean
S.D.
Skew
Kurt

0.000
1.000
0.100
7.976

0.026 0.058
0.952 L002

—0.266 —0.144
5.807 4.367

—0.070 0.031 0.052 —0.013
0.895 1.060 1.076 0.871
1.699 1.225 0.409 0.025
8.371 5.778 1.970 2.696

0.001
0.794
0.105
1.336

—0.024
0.958
1.300
7.503

0.032
.0.844
0.315
2.091

—0.018
0.877

—0.363
2.241



Table IV (continued)

Moment Raw HS 1115 BTOP BEOT TTOP TEOT RTOP RBOT DTOP DBOT

All Stocks, 1962 to 1966

0.089 —0.403 —0.034 —0.132 —0.422 —0.076 0-108 —0.004 —0.163
0.908 0.569 0.803 0.618 0.830 0.886 0.910 0.924 0.564
0.973 —1.176 0.046 —0.064 -'--1.503 —2.728 2.047 —0.551 —0.791
1.828 0.077 0.587 —0.444 2.137 13.320 9.510 1.434 2.010

All Stocks, 1982 to 1986
0.204 —0.137 —0.001 —0.053 —0.022 —0.028 0.116 —0.224 —0.052
1.442 0.804 1.040 0.982 1.158 0.910 0.830 0.868 1.082
2.192 0.001 0.048 1.370 1.690 —0.120 0.048 0.001 —0.091

10.530 0,863 0.732 8.460 - 7.086 0.780 0.444 1.174 0.818

All Stocks, 1987 to 1991
-

0.120 —0.080 —0.031 —0.052 0.038 0.098 0.049 —0.048 —0.122 -
- 1.136 0.925 0.826 1.007 0.878 0.936 1.000 0.772 0.860

0.976 —0.342 0.234 —0.248 1.002 0.233 0.023 —0.105 —0.375
.5.183 1.839 0.734 2.796 2.768 1.038. 2.350 0.313 2.598

All Stocks, 1992 to 1996
—0.058 —0.033 —0.013 —0.078 0.086 —0.006 —0.011 0.003 —0.105

0.854 0.964 1.106 1.093 0.901 0.973 0.879 0.932 0.875
—0.015 1.399 0.158 —0.127 0.150 0.283 0.236 0.039 —0.097
—0.059 7.584 0.626 2.019 1.040 1.266 1.445 1.583 0.205

Mean —0.000 0.116
S.D. 1.000 0.912
Skew 0.575 0.711
Kurt 6.555 1.538

Mean —0.000 —0.127
S.D. 1.000 0.864
Skew 0.734 —0.097
Kurt 5.194 1.060

0.041 0.099 0.090 0.028 —0.066 0.100 0.010 0.096 0.027
0.949 0.989 1.039 1.015 0.839 0.925 0.873 1.039 0.840
1.794 0.252 L258 1,601 0.247 2.015 1.021 0.533 —0.351
9.115 2.560 6.445 7.974 1.324 13.653 5.603 6.277 2.243

All Stocks, 1967 to 1971
0.114 0.121 0.016 0.045 0.077 0.154 0.136 —0.000 0.006
osos 0.995 1.013 0.976 0.955 1.016 1.118 0.882 0.930
1.080 0.574 0.843 1.607 0.545 0.810 1.925 0.465 0.431
2.509 0.380 2.928 10.129 1.908 1.712 5.815 1.585 2.476

All Stocks, 1972 to 1976
Mean
S.D.
Skew
Kurt

0.000 0.014
1.000 0.575
0,466 —0.281

17.228 2.194

Mean —0.000 0.025
S.D. 1.000 0.769
Skew 1.092 0.230
Kurt 20.043 1.618

All Stocks, 1977 to 19-81
—0.212 —0.112 —0.056 —0.110 0.086 0.055 0.177 0.081. 0.040

1.025 1.091 0.838 0.683 0.834 1.036 1.047 0.986 0.880
—1.516 —0.731 0.368 0.430 0.249 2.391 2.571 L520 —0.291

4.397 3.766 0.460 0.962 4.722 9.137 10.961 7.127 3.682

Mean
S.D.
Skew
Kurt

Mean.
S.D.
Skew
Kurt

Mean
S.D.
Skew
Kurt

0.000 —0.147
1.000 1.073
1.267 —1.400

21.789 4.899

0.000 0.012
1.000 0.907
0.104 —0.326

12.688 3.922

0.000 —0.119
1.000 0.926

—0.036 0.079
5.377 2.818
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Table VII

Kolmogorov-Smirnov test of the equality of conditional and unconditional 1-day return distributions
for NYSE/AMEX stocks from 1962 to 1996, in 5-year subperiods, and in size quintiles. Conditional
returns are defined as the daily return three days following the conclusion of an occurrence of one of
10 technical indicators: head-and-shoulders (HS), inverted head-and-shoulders (1115), broadening
top (BTOP), broadening bottom (BBOT), triangle top (PTOP), triangle bottom (TBOT), rect-
angle top (RTOP), rectangle bottom (RBOT), double top (DTOP), and double bottom (DBOT).
All returns have been normalized by subtraction of their means and division by their standard
deviations, p-values are with respect to the asymptotic distribution of the Kolmogorov-Smirnov
test statistic. The symbols 'r(x,j' and '-r(4' indicate that the conditional distribution is also
conditioned on decreasing and increasing volume trend, respectively.

Statistic HS IllS BTOJ> BROT flOP TBOT aro RBOT DTOP DBOT

All Stocks, 1962 to 1996

p-value
1,89
0.002

1.22
0.104

1.15
0.139

1.76 0.90 1.09
0.004 0.393 0.185

1.84
0.002

2.45
0.000

1.51
0.021

1.06
0.215

7 ,-('...)
p-value

1.49
0.024

0.95
0.327

0.44
0.989

0.62 0.73 1.33
0.839 0.657 0.059

1.37
0.047

1.77
0.004

0.96
0.319

0.78
0.579

r(,)
p-value

0.72
0.671

1.05
0.220

1.33
0.059

1.59 0.92 1.29
0.013 0.368 0.073

1.13
0.156

1.24
0.090

0.74
0.638

0.84
0.481

Duff.
p-value

0.88
0.418

0.54
0.935

0.59
0.879

0.94 075 1.37
0.342 0.628 0.046

0.79
0.557

1.20
0.111

0.82
0.512

0.71
0.698



Table VII (continued)

Statistic HS IHS ETOP BBOT flOP TEOT RTOP REOT DTOP DBOT

1.82 L63 0.93
0.003 0.010 0.353

1.62 L03 0.88
0.010 0.242 0.427

1.06 1.63 0.96
0.213 0.010 0.317

0.78 0.94 1.04
0.576 0.334 0.228

0.83 1.56 1.00
0.502 0.016 0.266

0.95 0.94 0.66
0.326 0.346 0.775

1.05 1.43 0.93
0.223 0.033 0.350

1.02 1.14 0.45
0.246 0.148 0.986

0.72 0.61 1,29
0.683 0.852 0.071
1.01 0.95 0.83
0.255 0.330 0.504

0.93 0.66 1.29
0.349 0.772 0.072
1.10 0.97 0.64
0.175 0.301 0.804

Smallest Quintile, 1962 to 1996

0.59 1.19 0.72
0.872 0.116 0.679

0.67 0.80 1.16
0.765 0.540 0.136

0.43 0.95 0.67
0.994 0.325 0.756

0.52 0.48 1.14
0.951 0.974 0.151

1.20
0.114

0.69
0.723

1.03
0.236

0.68
0.741

0.98
0.290

1.00
0.271

0.47
0.981

0.48
0.976

1.43
0.033

1.46
0.029
0.88
0.423

0.98
0,291

7
p-value
7
p-value
7
p-value
7 Duff.
p-value

7
p-value

p-value

77(4
p-value
7 Duff.
p-value

7
p-value
7
p-value

77(4
p-value
7 Duff.
p-value

7
p-value
7
p-value

77(4
p-value
7 Duff.
p-value

7
p-value

77(N)
p-value
7 7(1')
p-value
7 Duff.
p-value

1.09
0.188

1.31
0.065

0,51
0.959

0.98
0.294

0.88
0.417

0.71
0.703

1.19
0.119

0.99
0.276

1.96
0.001

1.45
0.031

0.93
0.354

0.66
0.774

1.37
0.048
1.34
0.056

0.64
0.810

0.64
0.806

2nd Quintile, 1962 to 1996

0.92 0.62 0.84
0.365 0.505 0.485

0.42 0.91 0.90
0.994 0.378 0.394

0.83 0.89 0.98
0.497 0.407 0.289

0.71 1.22 0.92
0.687 0.102 0.361

3rd Quintile, 1962 to 1996

1.28 0.57 1.03
0.074 0.903 0.243

0.76 0.61 0.82
0.613 0.854 0.520

1.14 0.63 0.80
0.147 0.826 0.544

0.48 0.50 0.89
0.974 0.964 0.413

4th Quintile, 1962 to 1996

0.84 0.61 0.84
0.479 0.855 0.480

0.96 0.78 0.84
0.311 0.585 0.487

0.96 1.16 0.69
0.316 0.137 0.731

1.16 1.31 0.78
0.138 0.065 0.571

Largest QuintiIe, 1962 to 1996

1.19
0.120
0.94
0.339

0.93
0.356

0.79
0.552

1.29
0.073
0.86
0.443

1.15
0.141

0.79
0.564

1.50
0.023

1.61
0.012

0.78
0.578

0.91
0.383

1.37
0.047

0.72
0.680
1.16
0.136

0.92
0.363

1.76
0.004

0.87
0.44 2

0.87
0.432

1.11

0.84
0.485

1.12
0.165

0.94
0.342

1.16
0.133

1.46
0.029

1,50
0.022

0.96
0.317

1.18
0.126

1.55
0.016
1.17
0.131

0.59
0.878

0.72
0.670

0.72
0.682
0.62
0.841

0.69
0.720
0.66
0.780

0.90
0.395

0.64
0.802

0.46
0.982

0.54

0.78
0.583
0.73
0.663
0.58
0.892
0.62
0.840

0.84
0.478

0.97
0.298

0.99
0.286
0.68
0.74 5

1.14
0.150

1,01
0.258

0.86
0.450
1.15
0.143

0.53
0.943

1.01
0.258
0.85
0.468

1.10
0.176

1.28
0.077
1.20
0.114

0.88
0.4 18

0.79

1.25 1.16 0.98
0.088 0.136 0,287

1.12 0.90 0.57
0.164 0.386 0.906

0.81 0.93 0.83
0.522 0.350 0.495

0.71 0.54 0.59
0.699 0.934 0.874

0.48
0.977

0.78
0.580

0.61
0.854

0.64

0.50
0.964

0.64
0.806

0.69
0.729

0.76

0.80 0.94
0.544 0.346

1.17 0.91
0.127 0.379

0.81 0.73
0.532 0.661

1.21 0.85
0.800 0.607 0.110 0.467 0.170 0.929 0.552



Table VII (continued)

Statistic 115 IllS UTOP BBOT flop TBOT ItTOP RBC)T DTOP DBOT

1.29 1.67 1.07
p-value 0.072 0.007 0.202

7 r('..) 0.83 1.01 1.04
p-value 0.499 0.260 0.232

7 r(,) 1.13 1.13 0.84
p-value 0.156 0.153 0.480

7 Duff. 0.65 0.71 0.75
p-value 0.799 0.691 0.629

1,10 0.96 0.60
p-value 0.177 0.317 0.867

7 i-(',) 1.02 0.80 0.53
p-value 0.248 0.551 0.943

7 r(i') 1.08 0.86 0.68
p-value 0.190 0.454 0.750

Duff. 1.36 0.51 0.53
p-value 0.049 0.956 0.942

7 0.47 0.75 0.87
p-value 0.980 0.620 0.441

7 r(') 0.80 0.40 0.50
p-value 0.539 0.998 0.966

7 r(,) 0.49 0.78 0.94
p-value 0.970 0.577 0.340

'y Duff. 0.55 0.56 0.51
p-value 0.925 0.915 0.960

7 1.16 0.73 0.76
p-value 0.138 0.665 0.617

7 T(\) 1.04 0.73 1.00
p-value 0.228 0.654 0.274

7 t(,) 0.75 0.84 0.88
p-value 0.623 0.476 0.426

7 Duff. 0.67 0.94 0.88
p-value 0.767 0.335 0.423

0.72 0.75 1.32
0.671 0.634 0.062

1.20
0.112

1.53
0.018

2.04
0.001

1.73
0.005

0.80 0.63 1.80
0.539 0.826 0.003

0.66
0.771

1.84
0.002

1.03
0.244

1.54
0.017

0.84 0.58 1.40
0.475 0.894 0.040

1.12
0.163

0.83
0.492

1.09
0.183

1.16
0.135

0.76 0.60 1.90
0.615 0.863 0.001

0.68
0.741

1.35
0.052

0.73
0.657

0.83
0.503

All Stocks, 1967 to 1971

0.65 0.98 0.76
0.797 0.292 0.606

1.29
0.071

1.65
0.009

0.87
0.436

1.22
0.101

0.85 0.97 0.77
0.464 0.303 0.590
0.91 1.11 0.82
0.373 0.169 0.508

0.71
0.700
0.79
0.554

1.42
0.035

0.73
0.660

0.97
0.300

0.71
0.699

1.06
0.214

0.96
0.315

0.76 0.68 0.71
0.616 0.751 0.699

0.71
0.701

0.98
0.290

1.06
0.210

1.12
0.163

All Stocks, 1972 to 1976

1.56 1.21 0.75
0.015 0.106 0.627

0.87
0.441

0.94
0.341

1.64
0.009

1,20
0.113

1.24 1.21 0.65
0.093 0.106 0.794

1.26
0.084

0.63
0.821

0.70
0.718

1.39
0.041

1.21 1.12 1.03
0.108 0.159 0.244

0.81
0.521

0.95
0.331

0.84
0.485

0.70
0.7t9

0.95 0.81 1.11
0.333 0.525 0.170

1.15
0.141

0.62
0.836

0.67
0.767

1.31
0.065

All Stocks, 1977 to 1981

1.16 0.82 1.14
0.136 0.506 0.147

1.01
0.263

0.87
0.428

0.86
0.449

1.79
0.003

1.31 1.10 1.32
0.065 0.176 0.062

0.83
0.494

0.80
0.550

1.20
0.113

1.81
0.003

0.65 0.67 0.76
0.799 0.754 0.602

1.51
0.020.

1.41
0.037

0.86
0.450

0.99
0.280

0.70 0.65 0.70
0.708 0.785 0.716

1.11
0.172

1.29
0.073

1.16
0.137

0.70
0.713



Table VII (continued)

Statistic HS IRS . BTOP BBOT flop TROT RTOP RHOT DTOP DBOT

AU Stocks, 1982 to 1986

1.57 0.99 0.59 1.46 1.47 1.04 0.87 0.68 0.76 0.90
p-value 0.015 0.276 0.883 0.029 0.027 0.232 0.431 0.742 0.617 0.387

'7 r(".) 1.17 0.68 0.44 1.30. 1.53 1.21 1.08 0.93 0.84 0.88
p-value 0.129 0.741 0.991 0.070 0.018 0.106 0.190 0.356 0.478 0.421

'y i-(,) 0.81 1.03 0.74 0.62 0.83 1.23 0.77 0.79 0.63 0.81
p-value 0.533 0.243 0.640 0.831 0.499 0.097 0.597 0.564 0.821 0.528

Duff. 0.51 0.79 0.70 0.81 0.74 1.21 0.73 0.75 0.93 0.74
p-value 0.961 0.567 0.717 0.532 0.643 0.107 0.657 0.623 0.352 0.642

All Stocks, 1987 to 1991

1.36 1.53 1.05 0.67 0.75 0.86 0.60 1.09 1.20 0.67
p-value 0.048 0.019 0.219 0.756 0.627 0.456 0.862 0.185 0.111 0.764

,-('-.,) 0.52 1.16 1.25 0.72 1.03 0.81 0.81 0.61 1.07 0.68
p-value 0.953 0.135 0.087 0.673 0.235 0.522 0.527 0.848 0.201 0.751

'7 T(/) 1-72 1.03 0.64 137 0.74 1.10 1.04 1.20 1.02 1.32
p-value 0.006 0.241 0.813 0.046 0.639 0.181 0.232 0.111 . 0.250 0.062

Duff. 1.11 1.29 1.07 1.06 0.67 0.93 0.89 0.74 0.84 1.17
p-value 0.168 0.072 0.201 0.215 0.753 0.357 0.403 0.638 0.483 0.129

All Stocks, 1992 to 1996

1.50 1.31 1.05 1.89 1.27 0.94 1.23 0.66 1.72 1.54
p-value 0.022 0.066 0.222 0.002 0.078 0.343 0.095 0.782 0.005 0.018

7 r(',) 0.87 1.05 0.60 0.89 1.11 1.03 0.90 0.65 0.99 1.12

p-value 0.443 0.218 0.858 0.404 0.174 0.242 0.390 0.787 0.2.83 0.165

7 r(t) 0.72 0.66 0.75 1.42 1.02 0.58 0.61 0.64 1.36 0.93
p-value 0.670 0.778 0.624 0.036 0.246 0.895 0.854 0.813 0.048 0.357

7 Duff. 0.58 0.88 0.50 0.49 0.43 0.81 0.60 0.46 0.96 0.99
p-value 0.887 0.422 0.966 0.971 0.993 0.528 0.858 0.984 0.314 0.282



TabLe VIII

Kolmogorov-Smirnov test of the equality of conditional and unconditional 1-day return distribu-
tions for NASDAQ stocks from 1962 to 1996, in 5-year subperiods, and in size quintiles. Conditional
returns are defined as the daily return three days following the conclusion of an occurrence of one of
10 technical indicators: head-and-shoulders (HS), inverted head-and-shoulders (IHS), broadening

top (BTOP), broadening bottom (BBOT), triangle top (TTOP), triangle bottom (TBOT), rect-
angle top (RTOP), rectangle bottom (RBOT), double top (DTOP), and double bottom (DBOT).
All returns have been normalized by subtraction of their means and division by their standard
deviations, p-values are with respect to the asymptotic distribution of the Kolmogorov-Smirnov
test statistic. The symbols 'r(N)' and 'r(4' indicate that the conditional distribution is also
conditioned on decreasing and increasing volume trend, respectively.

Statistic HS IRS DTOP BBOT flop TEOT RTOP REOT DTOP DEOT

••!
All Stocks, 1962 to 1996

p-vatue
2.31
0.000

2.68
0.000

1.60
0.012

184 2.81 2.34
0.002 0.000 0.000

2.69
0.000

1.90
0.001

2.29
0.000

2.06
0.000

'y r(s,)
p-value

1.86
0.002

1.53
0.019

1.35
0.052

0.99 1.97 1.95
0.281 0.001 0.001

2.16
0.000

1.73
0.005

1.38
0.045

1.94
0.001

'y r(i.)
p-value

1.59
0.013

2.10
0.000

1.82
0.003

1.59 1.89 1.18
0.013 0.002 0.126

1.57
0.014

1.22
0.102

2.15
0.000

1.46
0.028

' Duff.
p-value

1.08
0.195

0.86
0.450

1.10
0.175

0.80 1.73 0.74
0.542 0.005 0.637

0.91
0.379

0.75
0.621

0.76
0.619

1.52
0.020



Table VIII (continued)

Statistic IIS IllS BTOP BBOT flop TEOT RTOP R.BOT DTOP DBOT

Smallest Quintile, 1962 to 1996

7
p-value

77(N)
p-value
7 r(,')
p-value
7 Duff.
p-value

7
p-value

77(N)
p-value
7 r(,)
p-value
7 Duff.
p-value

7
p-value
7
p-value
7 r(,)
p-value
7 Duff.
p-value

1.51 2.16 1.72
0.021 0.000 0.006

1.16 1.30 0.85
0.139 0.070 0.463

0.85 1.73 1.61
0.462 0.005 0.012

1.04 0.95 0.83
0.227 0.334 0.493

1.55 1.46 0.94
0.016 0.029 0.341

1.11 1.13 1.08
0.173 0.157 0.192

1.37 0.87 0.73
0.048 0.439 0.665

1.23 0.62 0.97
0.095 0.535 0.309

1.25 1.72 0.82
0.087 0.005 0.510

0.93 1.08 0.54
0.348 0.194 0.930

0.59 1.14 0.97
0.873 0.146 0.309

0.61 0.89 0.58
0.852 0.405 0.890

1.04 0.82 1.20
0.233 0.510 0.111

0.81 0.54 0.57
0.528 0.935 0.897

0.97 1.04 1.29
0.306 0.229 0.071
1.17 0.89 0.98
0.128 0.400 0.292

1.68 1.22 1.55 2,13
0.007 0.101 0.016 0.000
1.14 1.25 1.62 1.43
0.150 0.089 0.010 0.033
2.00 1.34 0.79 1.58
0.001 0.055 0.553 0.014
1.44 1.39 0.72 0.95
0.031 0.042 0.574 0.326

2nd Quintile, 1962 to 1996

1.44 1.24 1.08 1.20
0.031 0.095 0.192 0.113
0.92 1.23 0.79 1.34
0.371 0.097 0.557 0.055
0.97 1.38 1.29 1.12
0.309 0.044 0.073 0.162
0.69 1.02 1.05 1.09
0.733 0.248 0.224 0.183

3rd Quintile, 1962 to 1996

1.71 1.41 L52 1.25
0.006 0.038 0.020 0.089
1.23 1.06 1.02 0.79
0.097 0.213 0.245 0.560
1.37 0.75 1.01 1.13
0.047 0.633 0.262 0.159
0.46 0.61 0.89 0.52
0.984 0.844 0.404 0.947

4th Quintile, 1962 to 1996

0.98 1.30 1.25 1.88
0.298 0.067 0.087 0.002
1.05 0.92 1.06 1.23
0.217 0.367 0.215 0.097
0.53 2.25 0.71 1.05
0.938 0.000 0.696 0.219
0.97 1.86 0.62 0.93
0.301 0.002 0.843 0.352

0.77 1.20 0.97
0.589 0.114 0.309
0.73 1.31 0.92
0.653 0.065 0.371

Largest Quintile, 1962 to 1996

1.08 1.01 1.03
0.190 0.255 0.242

1.03 0.54 0.93
0.237 0.931 0.356

1.18 1.39 0.50
0.123 0.041 0.967

0.94 1.25 0.73
0.342 0.090 0.668

0.66 0.92 0.68 0.85
0.778 0.360 0.742 0.462
0.47 0.77 0.76 0.85
0.981 0.587 0.612 0.468
0.93 0.88 1.25 0.77
0.358 0.415 0.089 0.597
0.84 0.76 1.11 0.73
0.476 0.617 0.169 0.662

1.74
0.005
1.08
0.19 1

1.47
0.026
0.94
0.338

1.90
0.001

1.09
0.185
1.12
0.165

0.58
0.894

1.86
0.002

1.38
0.044

1.37
0.047

0.60
0.864

1.98
0.001

1.95
0.001

1.20
0.115

1.09
0.184

1.27
0.078

1.61
0.011

0.94
0.343
0.51
0.955

1.82
0.003
0.88
0,423
1.78
0.003

1.09
0.188

1.70
0.006

1.05
0.2 16

1.52
0.019

0.73
0.654

1.10
0.175

1.19
0.117

0.91
0,38 1

0.78
0.579

1.84
0.002

1.47
0.026

1.34
0.054

0.38
0.999

0.79
0.553

0.72
0.672

7
p-value

77(N)
p-vaLue

7 r(,)
p-value
7 flit
p-value

0.94 0.66
0.341 0.779
1.53 0.87
0.019 0.431

7
p-value
7
p-value
7
p-value
7 Duff.
p-value

0.137 0.150 0.756
0.62
0.840

0.85
0.465

1.14
0.149

1.13
0.156

0.98
0.292

1.12
0.160

0.86
0.457

0.86
0.454

0.77
0598



Table VIII (continued)

Statistic HS IHS BTOP BBOT flOP TEOT RTOP RBOT DTOP DBOT

All Stocks, 1962 to 1966

1.01 0.84 1.08 0.82 0.71 0.70 1.59 0.89 1.12 1.10
p-value 0.261 0.481 0.193 0.508 0.697 0.718 0.013 0.411 0.166 0.115

7 T(\.) 0.95 0.65 0.41 1.05 0.51 1.13 0.79 0.93 0.93 1.21
p-value 0.322 0.798 0.997 0.224 0.956 0.155 0.556 0.350 0.350 0.108

7 T(/') 0.77 0.96 0.83 0,73 1.35 0.49 1.17 0.62 1.18 1.15
p-value 0.586 0.314 0.489 0.663 0.052 0.972 0.130 0.843 0.121 0.140

7 Duff. 1.10 0.67 0.32 0.69 1.29 0.58 0.80 0.75 0.98 1.06
p-value 0.174 0.761 1.000 0.735 0.071 0.892 0.551 0.620 0.298 0.208

All Stocks, 1967 to 1971

0.75 1.10 1.00 0.74 1.27 1.35 1.16 0.74 0.74 1.21

p-value 0.636 0.175 0.273 0437 0.079 0.052 0.136 0.642 0.638 0.107

7 r("..) 1.03 0.52 0.70 0.87 1.24 1.33 1.29 0.83 0.72 1.45
p-value 0.241 0.947 0.714 0.438 0.092 0.058 0.072 0.490 0.684 0.031

7 r(,s) 1.05 1.08 1.12 0.64 0.79 0.65 0.55 0.53 0.75 0.69
p-value 0.217 0.192 0.165 0.810 0.566 0.797 0.923 0.941 0.631 0.723

Duff. 1.24 0.89 0.66 0.78 1.07 0.88 0.88 0.40 0.91 0.76
p-value 0.093 0.413 0.770 0.585 0.203 0.418 0.423 0.997 0.385 0.602

All Stocks, 1972 to 1976

0.82 1.28 1.84 1.13 1.45 1.53 1.31 0.96 0.85 1.76
p-value 0.509 0.077 0.002 0.156 0.029 0.019 0.064 0.314 0.464 0.004

7 r('.) 0.59 0.73 —99.00 0.91 1.39 0.73 1.37 0.98 1.22 0.94
p-value 0.875 0.669 0.000 0.376 0.042 0.654 0.046 0.292 0.100 0.344

7 r(,') 0.65 0.73 —99.00 —99.00 —99.00 —99.00 0.59 0.76 0.78 0.65
p-value 0.800 0.653 0.000 0.000 0.000 0.000 0.878 0.611 0.573 0.798

7 Duff. 0.48 0.57 —99.00 —99.00 —99.00 —99.00 0.63 0.55 0.92 0.37
p-value 0.974 0.902 0.000 0.000 0.000 0.000 0.828 0.925 0.362 0.999

All Stocks, 1977 to 1981
• 1.35 1.40 1.03 1.02 1.55 2.07 0.74 0.62 0.92 1.28

p-value 0.053 0.039 0.23t 0.249 0.016 0.000 0.636 0.842 0.369 0.077

'y ,j) 1.19 1.47 —99.00 —99.00 0.96 0.98 0.86 0.79 0.81 0.68
p-value 0.117 0.027 0.000 0.000 0.317 0.290 0.453 0.554 0.522 0.748

,-(i') 0.69 0.94 0.80 —99.00 1.46 —99.00 0.56 0.82 1.06 094
p-value 0.728 0.341 0.542 0.000 0.028 0.000 0.918 0.514 0.207 0.336

Diff. 0.73 0.90 —99.00 —9900 0.35 —99.00 0.44 0.37 0.80 0.53
p-value 0.665 0.395 0.000 0.000 1.000 0.000 0.991 0.999 0.541 0.944



Table VIII (continued)

Statistic US IllS BTOP BBOT flop TBOT RTOP RBOT DTOP DBOT

All Stocks, 1982 to 1986

166 1.59 1.17 0.73 1.46 1.69 1.04 1.24 2.44 1.27
p-value 0.008 0.013 0.129 0.654 0.028 0.006 0.232 0.093 0.000 0.078

7 ,-() 1.65 1.10 0.46 0.74 0.95 1.47 0.83 1.18 1.20 0.59
p-value 0.009 0.176 0.984 0.641 0.330 0.027 0.503 0.121 0.112 0.873

7 T(/) 1.13 1.31 0.86 0.42 1.17 1.04 0.97 1.13 1.68 0.89
p-value 0.153 0.065 0.445 0.995 0.129 0.231 0.302 0.155 0.007 0.405
7 Duff. 0.67 0.39 0.51 0.42 0.85 0.43 0.41 0.67 0.66 0.75
p-value 0.755 0.998 0.957 0.994 0.462 0.993 0.996 0.766 0.782 0.627

AU Stocks, 1987 to 1991

-y 1.24 1.29 0.91 0.88 1.28 1.41 2.01 1.49 1.55 1.53
p-value 0.091 0.070 0.384 0.421 0.074 0.039 0.001 0.024 0.017 0.019
7 r(',.) 1.05 1.00 1.00 0.78 1.68 0.92 1.67 1.25 0.61 0.86
p-value 0.221 0.266 0.274 0.580 0.007 0.369 0.008 0.087 0.849 0.448

7 T(/) 1.23 1.26 1.06 1.32 0.65 1.27 1.10 1.26 1.67 1.81
p-value 0.099 0.084 0.208 0.060 0.787 0.078 0.176 0.085 0.007 0.003
7 Duff. 0.80 0.91 1.22 1,28 1.22 0.92 0.87 0.81 1.07 1.05
p-value 0.552 0.375 0.103 0.075 0.102 0.360 0.431 0.520 0.202 0.217

All Stocks, 1992 to 1996

1.21 1.61 0.84 0.90 0.97 0.91 L60 1.51 1.13 LOU
p-value 0.108 0.011 0.476 0.394 0.299 0.379 0.012 0.021 0.156 0.265

7 t('.) 0.68 L02 0.81 0.78 0.81 0.93 0.79 1.07 0.94 0.64
p-value 0.752 0.246 0.530 0.578 0.532 0.357 0.558 0.201 0.340 0.814
7 T(/) 1.56 0.85 0.71 L00 1.10 1.04 1.43 0.93 0.90 1.44
p-value 0.015 0.470 0.688 0.275 0.180 0.231 0.034 0.352 0.392 0.031

yDiff. 1.45 0.59 0.94 0.62 1.15 1.14 0.64 0.52 0.59 1.35
p-value 0.030 0.879 0.346 0.840 0.139 0.148 0.814 0,953 0.874 0.052



Table IX

Bootstrap percentiles for the Kolmogorov-Smirnov test of the equality of conditional and uncondi-
tional 1-day return distributions for NYSE/AMEX and NASDAQ stocks from 1962 to 1996, and
for size quintiles, under the null hypothesis of equality. For each of the two sets of market data,
two sample sizes, in1 and in2, have been chosen to span the range of frequency counts of patterns
reported in Table 1. For each sample size mj, we resample 1-day normalized returns (with replace-
ment) to obtain a bootstrap sample of mj observations, compute the Kohnogorov-Smirnov test
statistic (against the entire sample of 1-day normalized returns), and repeat this procedure 1,000
times. The percentiles of the asymptotic distribution are also reported for comparison.

Percentile
NYSE!AMEX Saznpe NASDAQ Sample

Ami,n '712 A Ami,n m2 . A

All Stocks, 1962 to 1996

0.01
0.05
0.10
0.50
0.90
0.95
0.99

2076
2076
2076
2076
2076
2076
2076

0.433
0.515
0.568
0.827
1.219
1.335
1.608

725 0.435 0.441 1320
725 0.535 0.520 1320
725 0.590 0.571 1320
725 0.835 0.828 1320
725 1.237 1.224 1320
725 1.395 1.358 1320
725 1.611 1.628 1320

0.430
0.514
0.573
0.840
1.244
1.373
1.645

414 0.438
414 0.522
414 0.566
414 0.826
414 1.229
414 1.340
414 1.600

0.441
0.520
0.571
0.828
1.224
1.358
1.628

Smallest Quintile, 1962 to 1996

0.01
0.05
0.10
0.50
0.90
0.95
0.99

320
320
320
320
320
320
320

0.456
0.535
0.586
0.848
1.231
1.357
1.661

78 0.406 0.441 218
78 0.502 0.520 218
78 0.559 0.571 218
78 0.814 0.828 218
78 1.204 1.224 218
78 1.330 1.358 218
78 1.590 1,628 218

0.459
0.533
0.590
0.847
1.229
1.381
1.708

41 0.436
41 0.498
41 0.543
41 0.801
41 1.216
41 1.332
41 1.571

0.441
0.520
0.571
0.828
1.224
1.358
1.628

. 2nd Quintile, 1962 to 1996

0.01
0.05
0.10
0.50
0.90
0.95
0.99

420
420
420
420
420
420
420

0.445
0.530
0.580
0.831
L197
1.349
1.634

146 0.428 0.441 305
146 0.505 0.520- 305
146 0.553 0.571 305
146 0.823 0.828 305
146 1.210 1.224 305
146 1.343 1.358 305
146 1.626 1.628 305

0.458
0.557
0.610
0.862
1.265
1.407
1.686

68 0.426
68 0.501
68 0,559
68 0.804
68 1.210
68 1.409
68 1.614

0.441
0.520
0.571
0.828
1.224
1,358
1.628

3rd Quintile, 1962 to 1996

0.01
0.05
0.10
0.50
0.90
0.95
0.99

458
458
458
458
458
458
458

0.442
0.516
0.559
0.833
1.216
1.406
1.660

145 0.458 0.441 279
145 0.508 0.520 279
145 0.557 0.571 279
145 0.835 0.828 279
145 1.251 1.224 279
145 1.397 1.358 279
145 1.661 1.628 279

0.464
0.539
0.586
0.832
1.220
1.357
1.606

105 0.425
105 0.525
105 0.570
105 0.818
105 1.233
105 1.355
105 1.638

0.441
0.520
0.571
0.828
1.224
1.358
1.628



Table IX (continued)

Percentile
NYSE/AMEX Sample NASDAQ Sample

mj An,,, 7712 A tvij Ams,n Am,,n A

4th Qiiotile, 1962 to 1996

0.01 424 0.429 173 0.418 0.441 303 0.454 92 0.446 0,441
0.05 424 0.506 173 0.516 0.520 303 0.526 92 0.506 0.520
0.10 424 0.552 173 0.559 0.571 303 0.563 92 0.554 0.571
0.50 424 0.823 173 0.815 0.828 303 0.840 92 0.818 0.828
0.90 424 1.197 173 1,183 1.224 303 1.217 92 1.178 1.224
0.95 424 1.336 173 1.313 1.358 303 1.350 92 1.327 1.358
0.99 424 1.664 173 1.592 1.628 303 1.659 92 1.606 1.628

Largest Quintile, 1962 to 1996

0.01 561 0.421 167 0.425 0.441 308 0.441 108 0.429 0.441
0.05 561 0.509 167 0.500 0.5W 308 0.520 108 0.508 0.520
0.10 561 0.557 167 0.554 0.571 308 0.573 108 0.558 0.571
0.50 561 0.830 157 0.817 0.828 308 0.842 108 0.816 0.828
0.90 561 1.218 167 1.202 1.224 , 308 1.231 108 1.226 1.224
0.95 561 1.369 167 1.308 1.358 308 1.408 108 1.357 1.358
0.99 561 1.565 167 1.615 1.628 308 1.724 108 1.630 1.628



Table X (continued)

Percentile
NYSE/AMEX Sample NASI)AQ Sample

.

mj Ami,,. 2 am,,,. a lThi a1,. 2 a,,.,,,. a

All Stocks, 1982 to 1986

0.01 313 0.462 106 0.437 0.441 120 0.448 44 0.417 0.441
0.05 313 0.542 106 0.506 0.520 120 0.514 44 0.499 0.520
0.10 313 0.585 106 0.559 0.571 120 0.579 44 0.555 0.571
0.50 313 0.844 106 0.819 0.828 120 0.825 44 0.802 0.828
0.90 313 1.266 106 1.220 1.224 120 1.253 44 1.197 1.224

• 0.95 313 1.397 106 1.369 1.358 120 1.366 44 1.337 1.358
0.99 313 1.727 106 1.615 1.628 120 1.692 44 1.631 1.628

All Stocks, 1987 to 1991

0.01 287 0.443 98 0.449 0.441 312 0.455 50 0.432 0.441
0.05 287 0.513 98 0.522 0.520 312 0.542 50 0.517 0.520
0.10 287 0.565 98 0.566 0.571 312 0.610 50 0.563 0.571
0.50 287 0.837 98 0.813 0.828 312 0.878 50 0.814 0.828
0.90 287 1.200 98 1.217 1.224 312 1.319 50 1.216 1.224
0.95 287 1.336 98 1.348 1.358 312 1.457 50 1.323 1.358
0.99 287 1.626 98 1.563 1.628 312 1.701 50 1.648 1.628

All Stocks, 1992 to1996

0.01 389 0.438 102 0.432 0.441 361 0.447 87 0.428 0.441
0.05 389 0.522 102 0.506 0.520 361 0.518 87 0.492 0.520
0.10 389 0.567 102 0.558 0.571 361 0.559 87 0.550 0.571
0.50 389 0.824 102 0.818 0.828 361 0.817 87 0.799 0.828
0.90 389 1.220 102 1.213 1.224 361 1.226 87 1,216 1.224
0.95 389 1.321 102 1.310 1.358 361 1.353 87 1.341 1.358
0.99 389 1.580 102 1.616 1.628 361 1.617 87 1.572 1.628


