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ABSTRACT

Technical analysis, also known as “charting,” has been part of financial practice for many
decades, but this discipline has not received the same level of academic scrutiny and acceptance as
more traditional approaches such as fundamental analysis. One of the main obstacles is the highly
subjective nature of technical analysis—the presence of geometric shapes in historical price charts is
often in the eyes of the beholder. In this paper, we propose a systematic and automatic approach to
technical pattern recognition using nonparametric kernel regression, and apply this method to alarge
number of U.S. stocks from 1962 to 1996 to evaluate the effectiveness to technical analysis. By
comparing the unconditional empirical distribution of daily stock returns to the conditional
distribution—conditioned on specific technical indicators such as head-and-shoulders or double-
bottoms-we find that over the 31-year sample period, several technical indicators do provide

incremental information and may have some practical value.
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One of the greatest gulfs between academic finance and industry practice is the separation
that exists between technical analysts and their academic critics. In contrast to fundamental
analysis, which was quick to be adopted by the scholars of modern quantitative finance, tech-
nical analysis has been an orphan from the very start. It has been argued that the difference
between fundamental analysis and technical analysis is not unlike the difference between
astronomy and astrology. Among some circles, technical analysis is known as “voodoo fi-
nance.” -And in his influential book A Random Walk Down Wall Street, Burton Malkiel
(1996) conctudes that “[ujnder scientific scrutiny, chart-reading must share a pedestal with
alchemy.” -

However, several academic studies suggest that despite its jargon and methods, technical
analysis may well be an effective means for extracting useful information from market prices.
For example, in rejecting the Random Walk Hypothesis for weekly US stock indexes, Lo and
MacKinlay (1988, 1999) have shown that past prices may be used to forecast future returns to
some degree, a fact that all technical analysts take for granted. Studies by Tabell and Tabell
(1964), Treynor and Ferguson (1985), Brown and Jennings (1989), Jegadeesh and Titman
(1993), Blume, Easley, and O’Hara (1994), Chan, Jegadeesh, and Lakonishok (1996), Lo and
MacKinlay (1997), Grundy and Martin (1998), and Rouwenhorst (1998) have also provided
indirect support for technical analysis, and more direct support has been given by Pruitt
and White (1988), Neftci (1991), Brock, Lakonishok, and LeBaron (1992), Neely, Weber,
and Dittmar (1997), Neely and Weller (1998), Chang and Osler (1994), Osler and Chang
(1995), and Allen and Karjalainen (1999).

One explanation for this state of controversy and confusioh is the unique and sometimes
impenetrable jargon used by technical analysts, some of which has developed into a standard
lexicon that can be translated. But there are many “homegrown” variations, each with its
own patois, which can often frustrate the uninitiated. Campbell, Lo, and MacKinlay (1997,
pp. 43-44) provide a striking example of the linguistic barriers between technical analysts

and academic finance by contrasting this statement:

The presence of clearly identified support and resistance levels, coupled with

a one-third retracement parameter when prices lie between them, suggests the




presence of strong buying and selling opportunities in the near-term. -
with this one:

The magnitudes and decay pattern of the first twelve autocorrelations and the
statistical significance of the Box-Pierce Q-statistic suggest the presence of a

high-frequency predictable component in stock returns.

Despite the fact that both statements have the same meaning —that past prices contain
information for predicting future returns—most readers find one statement plausible and
the other puzzling, or worse, offensive. |

These linguistic barriers underscore an important difference between technical analysis
and quantitative finance: technical analysis is primarily visual, while quantitative finance is
primarily algebraic and numerical. Therefore, technical analysis employs the tools of geom-
etry and pattern recognition, while quantitative finance employs the tools of mathematical
analysis and probability and statistics. In the wake of recent breakthroughs in financial en~
gineering, computer technology, and numerical algorithms, it is no wonder that quantitative
finance has overtaken technical analysis in popularity —the principles of portfolio optimiza-
tion are far easier to program into a computer than the basic tenets of technical analysis.
Nevertheless, technical analysis has survived through the years, perhaps because its visual
mode of analysis is more conducive to human cognition, and because pattern recognition 1s
one of the few repetitive activities for which computers do not have an absolute advantage
(yet).

Indeed, it is difficult to dispute the potential value of price/volume charts when confronted
with the visual evidence. For example, compare the two hypothetical price charts given in
Figure I. Despite the fact that the two price series are identical over the first half of the
sample, the volume patterns differ, and this seems to be informative. In particular, the lower
chart, which shows high volume accompanying a positive price trend, suggests that there
may be more information content in the trend, e.g., broader participation among investors.
The fact that the joint distribution of prices and volume contains important information is

hardly controversial among academics. Why, then, is the value of a visual depiction of that

joint distribution so hotly contested?




In this paper, we hope to bridge this gulf between technical analysis and quantitative
finance by developing a systematic and scientific approach to the practice of technical anal-
ysis, and by employing the now-standard methods of empirical analysis to gauge the efficacy
of technical indicators over time and across securities. In doing so, our goal is not only to
develop a lingua franca with which disciples of both disciplines can engage in productive
dialogue, but also to extend the reach of technical analysis by augmenting its tool kit with
some modern techniques in pattern recognition.

The general goal of technical analysis is to identify regularities in the time series of prices
by extracting nonlinear patterns from noisy data. Implicit in this goal is the recognition
that some price movements are significant—they contribute to the formation of a specific
pattern—and others are merely random fluctuations to be ignored. In many cases, the
human eye can perform this “signal extraction” quickly and accurately, and until recently,
computer algorithms could not. However, a class of statistical estimators, called smoothing
estimators, is ideally suited to this task because they extract nonlinear relations () by
“averaging out” the noise. Therefore, we propose using these estimators to mimic, and in
some cases, sharpen the skills of a trained technical analyst in identifying certain patterns
in historical price series.

In Section I, we provide a brief review of smoothing estimators and describe in detail the
specific smoothing estimator we use in our analysis: kernel regression. Our algorithm for
automating technical analysis is described in Section II. We apply this algorithm to the daily
returns of several hundred U.S. stocks from 1962 to 1996 and report the results in Section
III. To check the accuracy of our statistical inferences, we perform several Monte Carlo

simulation experiments and the results are given in Section IV. We conclude in Section V.

I. Smoothing Estimators and Kernel Regression

The starting point for any study of technical analysis is the recognition that prices evolve

in a nonlinear fashion over time and that the nonlinearities contain certain regularities or

patterns. To capture such regularities quantitatively, we begin by asserting that prices {F;}




satisfy the following expression:
Pt = m(Xt)'i'Et ’ t=1,,T (1)

where m(X;) is an arbitrary fixed but unknown nonlinear function of a state variable Xj,
and {e:} is white noige.

For the purposes of pattern recognition in which our goal is to construct a smooth function
m(-) to approximate the time series of prices {p;}, we set the state variable equal to time,
X; = t. However, to keep our notation consistent with that of the kernel regression literature,
we will continue to use X, in our exposition.

When prices are expressed as (1), it is apparent that geometric patterns can emerge from
a visual inspection of historical prices series—prices are the sum of the nonlinear pattern
m(X;) and white noise—and that such patterns may provide useful information about the
unknown function m(-) to be estimated. But just how useful is this information?

To answer this question empirically and systematically, we must first develop a method
for automating the identification of technical indicators, i.e., we require a pattefn recogni-
tion algorithm. Once such an a,lgor-ithm is developed, it can be applied to a large number of
securities over many time periods to determine the efficacy of various technical indicators.
Moreover, quantitative comparisons of the performance of several indicators can be con-
ducted, and the statistical significance of such performance can be assessed through Monte
Carlo simulation and bootstrap techniques.!

In Section A, we provide a brief review of a general class of pa.ttern—recognition‘ tech-
niques known as smoothing, and in Section B we describe in some detail a particular method
called nonparametric kernel regression on which our algorithm is based. Kernel regression
estimators are calibrated by a bandwidth parameter and we discuss how the bandwidth is

selected in C.

A. Smoothing Estimators

One of the most common methods for estimating nonlinear relations such as (1) is smoothing,

in which observational errors are reduced by averaging the data in sophisticated ways. Ker-




nel regression, orthogonal series expansion, projection pursuit, nearest-neighbor estimators,
average derivative estimators, splines, and neural networks are all examples of smoothing
estimators. In addition to possessing certain statistical optimality properties, smoothing
estimators are motivated by their close correspondence to the way human cognition extracts
regularities from noisy data.? Therefore, they are ideal for our purposes.

To provide some intuition for how averaging can recover nonlinear relations such as
the function m(+) in (1), suppose we wish to estimate m(-) at a particular date ¢, when
Xi,=x9. Now suppose that for this one observation, X;,, we can obtain repeated independent
observations of the price P, say P, = p1,...,Pj: = p, (note that these are n independent
realizations of the price at the same date f;, clearly an impossibility in practice, but let us
continue with this thought experiment for a few more steps). Then a natural estimator of

the function m(-) at the point z; is

) = SXw = o3 (m) +d) @)
= m(e) + %éei, )

and by the Law of Large Numbers, the second term in (3) becomes negligible for large n.

Of course, if {F;} is a time series, we do not have the luxury of repeated observations
for a given X;. However, if we assume that the function m(-) is sufficiently smooth, then
for time-series observations X; near the value z,, the corresponding values of P, should be
close to m(zy). In other words, if m(-) is sufficiently smooth, then in a small neighborhood
around zp, m(zp) will be nearly constant and may be estimated by taking an average of the
P.’s that correspond to those X,’s near zy. The closer the X,’s are to the value z, the closer
an average of corresponding P;’s will be to m(zy). This argues for a weighted average of the
P,’s, where the weights decline as the X,’s get farther away from z,. This weighted-average
or “local averaging” procedure of estimating m(z) is the essence of smoothing.

More formally, for any arbitrary z, a smoothing estimator of m(z) may be expressed as

mE) = 7Y wda)r | @




where the weights {w;(z)} are large for those P;’s paired with X,’s near %, and small for those
P.’s with X’s far from z. To implement such a procedure, we must define what we mean by
“near” and “far.” If we choose too large a neighborhood around z to compute the average,
the weighted average will be too smooth and will not exhibit the genuine nonlinearities of
m(-). If we choose too small a neighborhood around z, the weighted average vﬁll be too
variable, reflecting noise as well as the variations in m(-). Therefore, the weights {w:(z)}

must be chosen carefully to balance these two considerations.

B. Kernel Regression

For the kernel regression estimator, the weight function w:(z) is constructed from a proba-

bility density function K(z), also called a kernek?
K(z)>0 , fK(u)du: 1. (5)
By rescaling the kernel with respect to a parameter A>0, we can change its spread, i.e., let:

Kn(u) = %K(u/h) . [Kaw)du = 1 (6)

and define the weight function to be used in the weighted average (4) as

win(z) = Kp(z — Xi)/on(z) (M)
an(z) = %t_z;l(h(w - Xy . (8)

If h is very small, the averaging will be done with respect to a rather small neighborhood
around each of the X;’s. If h is very large, the averaging will be over larger neighborhoods of
the X,'s. Therefore, controlling the degree of averaging amounts to adjusting the smoothing

parameter h, also known as the bandwidth. Choosing the appropriate bandwidth is an

important aspect of any local-averaging technique and is discussed more fully in Section C.




Substituting (8) into (4) yields the Nadaraya- Watson kernel estimator () of m(x):

Ef:l Kh(-'b' - Xt)Yt
E’g-|=l Kh(x - Xt)

) = 7L e ©

Under certain regularity conditions on the shape of the kernel K and the magnitudes and
behavior of the weights as the sample size grows, it may be shown that r,(z) converges to
m(z) asymptotically in several ways (see Hardle (1990) for further details). This convergence
property holds for a wide class of kernels, but for the remainder of this paper we shall use

the most popular choice of kernel, the Gaussian kernel:
1 2

Ki(z) = = (10)

C. Selecting the Bandwidth

Selecting the appropriate bandwidth % in (9) is clearly central to the success of ra(-) in
approximating m(-)—too little averaging yields a function that is too choppy, and too much
averaging yields a function that is too smooth, To illustrate these two extremes, Figure I
displays the Nadaraya-Watson kernél estimator applied to 500 datapoints generated from

.the relation:
Y, = Sin(X;) + 05¢ , &~N(0,1) (11)

where X, is evenly spaced in the interval [0, 2x|. Panel II{a) plots the raw data and the
function to be approximated.

Kernel estimators for three different bandwidths are plotted as solid lines in Panels II(b)-
(c). The bandwidth in II(b) is clearly too small; the function is too variable, fitting the
“noise” 0.5¢; as well as the “signal” Sin(-). Increasing the bandwidth slightly yields a much
more accurate approximation to Sin(-) as Panel II{c) illustrates. However, Panel II(d) shows
that if the bandwidth is increased beyond some point, there is too much averaging and

information is lost.

There are several methods for automating the choice of bandwidth % in (9), but the most




popular is the cross-validation method in which h is chosen to minimize the cross-validation

function:
1 & .
Cv(h) = 7 Y (P — ing) | (12)
t=1
where
1 T
Thh,t = T Zw.,,hY., . (13)
T#t

The estimator 77, is the kernel regression estimator applied to the price history { P} with
the t-th observation omitted, and the summands in (12) are the squared errors of the 7',
each evaluated at the omitted observation. For a given bandwidth parameter A, the cross-
validation function is a measure of the ability of the kernel regression estimator to fit each
observation P, when that observation is not used to comstruct the kernel estimator. By
. selecting the bandwidth that minimizes this function, we obtain a kernel estimator that
satisfies certain optimality properties, e.g., minimum asymptotic mean-squared error.’

Interestingly, the bandwidths obtained frorﬁ minimizing the cross-validation function are
generally too large for our application to technical analysis—when we presented several
professional technical analysts with plots of cross-validation-fitted functions 7n(+), they all
concluded that the fitted functions were too smooth. In other words, the cross-validation-
determined bandwidth places too much weight on prices far away from any given time ¢,
inducing too much averaging and discarding valuable information in local price movements.
Through trial and error, and by polling professional technical analysts, we have found that
~ an acceptable solution to this pfoblem is to use a bandwidth of 0.3 x h*, where A* minimizes
CV(h).> Admittedly, this is an ad hoc approach, and it remains an important challenge for
future research to develop a more rigorous procedure.

Another promising direction for future research is to consider alternatives to kernel re-
gression. Although useful for its simplicity and intuitive appeal, kernel estimators suffer

from a number of well-known deficiencies, e.g., boundary bias, lack of local variability in

the degree of smoothing, etc. A popular alternative that overcomes these particular defi-




ciencies is local polynomial regression in which local averaging of polynomials is performed
to obtain an estimator of m(x).° Such alternatives may yield important improvements the

pattern-recognition algorithm described in Section II.

II. Automating Technical Analysis

Armed with a mathematical representation #(-) of {P;} with which geometric properties can
be characterized in an objective manner, we can now construct an algorithm for automating

the detection of technical patterns. Specifically, our algorithm contains three steps:

1. Define each technical pattern in terms of its geometric properties, €.g., local extrema

(maxima and minima).

2. Construct a kernel estimator (-) of a given time series of prices so that its extrema

can be determined numerically.
3. Analyze 7(-) for occurrences of each technical pattern.

“The last two steps are rather straightforward a.pplicé.tions of kernel regression. The first step
is likely to be the most controversial because it is here that the skills a.nd judgment of a
professional technical analyst come into pla.y. Although we will argue in Section A that most
technical indicators can be characterized by specific sequences of local extrerén;,, technical
analysts may argue that these are poor approximations to the kinds of patterns that trained
human analysts can identify.

While pattern-recognition techniques have been successful in automating a number of
tasks previously considered to be uniquely human endeavors—fingerprint identification,
handwriting analysis, face recognition, and so on—mnevertheless it is possible that no algo-
rithm can completely capture the skills of an experienced technical analyst. We acknowledge
that any automated procedure for pattern recognition may miss some of the more subtle nu-
ances that human cognition is capable of discerning, but whether an algorithm is a poor

approximation to human judgment can only be determined by investigating the approxima-

tion errors empirically. As long as an algorithm can provide a reasonable approximation to




some of the cognitive abilities of a human analyst, we can use such an algorithm to investi-
gate the empirical performance of those aspects of technical analysis for which the algorithm
is a good approximation. Moreover, if technical analysis is an art form that can be taught,
then surely its basic precepts can be quantified and antomated to some degree. And as
increasingly sophisticated pattern-recognition techniques are developed, a larger fraction of
the art will become a science.

More importantly, from a practical perspective, there may be significant benefits to devel-
oping an algorithmic approach to technical analysis because of the leverage that technology
can provide. As with many other successful technologies, the antomation of technical pat-
tern recognition may not replace the skills of a technical analyst, but can amplify them
considerably.

In Section A, we propose definitions of ten technical patterns based on their extrema. In
Section B, we describe a specific algorithm to identify technical patterns based on the local
extrema of kernel regression estimators, and provide specific examples of the algorithm at

work in Section C.

A. Definitions of Technical Patterns

We focus on five pairs of technical patterns that are among the most popular patterns of -
traditional technical ana.ljrsis (see, for example, Edwards and Magee (1966, Chapters VII-
X)): head-and-shoulders (HS) and inverse head-and-shoulders (IHS), broadening tops (BT)
and bottoms (BB), triangle tops (TT) and bottoms (TB), rectangle tops (RT) and bottoms
(RB), and double tops (DT} and bottoms (DB). There are many other technical indicators
that may be easier to detect algorithmically—moving averages, support and resistance levels,
and oscillators, for example—but because we wish to illustrate the power of smoothing
techniques in automating technical analysis, we focus on precisely those patterns that are
most difficult to quantify analytically.

Consider the systematic component m(-) of a price history { P;} and suppose we have iden-
tified n local extrema, i.e., the local maxima and minima, of m(-). Denote by Fy, Fo,..., E,
the n extrema and ¢},£},...,%} the dates on which these extrema occur. Then we have the

following definitions:

10




Definition 1 (Head-and-Shoulders} Head-and-shoulders (HS) and inverted head-and-
shoulders (IHS) patterns are characterized by a sequence of five consecutive local extrema
E,, ..., Es such that:

" E) a mazimum

E3 > F 5 By > Ex

E, and Es within 1.5percent of their average
\ By and By within 1.5percent of their average

HS

e

( B a minimum

Es < B, E3 < Fy

E; and E5 within 1.5percent of their average
| Eq and E; within 1.5percent of their average

IHS

I

Observe that only five consecutive extrema are required to identify a head-and-shoulders
pattern. This follows from the formalization of the geometry of a head-and-shoulders pattern:
three peaks, with the middle peak higher than the other two. Because consecutive extrema
must alternate between maxima and minima for smooth functions,” the three-peaks pattern
corresponds to a sequence of five local extrema: maximum, minimum, highest maximum,
minimum, and maximum. The inverse head-and-shoulders is simply the mirror ifnage of the
head-and-shoulders, with the initial local extrema a minimum,.

Because broadening, rectangle and triangle patterns can begin on either a local maximum
or minimum, we allow for both of these possibilities in our definitions by dlstlngulshmg

between broadening tops and bottoms:

Definition 2 (Broadening) Broadening tops (BTOP) and bottoms (BBOT) are charac-

terized by a sequence of five consecutive local extrema Ey, ..., Es such that:
E, o mazimum E, o mintmum
BTOPE{E1<E3<E5 , BBOT = {E1>E3>E5
Eys > Ey E, < Ey

Definitions for triangle and rectangle patterns follow naturally:

Definition 3 (Triangle) Triangle tops (TTOP) and bottoms (TBOT) are characterized by

a sequence of five consecutive local extrema Ey,..., Es such that:
E, a mazimum E, a minimum
TTOPE{E1>E3>E5 , TBOTE{E1<E3<E5
E;, < E4 E2 > By

11




Definition 4 (Rectangle) Rectangle tops (RTOP} and bottoms (RBOT) are characterized
by a sequence of five consecutive local extrema E,, ..., Ey such that:

( | a mazimum

tops within 0.75 percent of their average
bottoms within 0.75 percent of their average
| lowest top > highest bottom

RTOP

( F'\ o minimum
tops within 0.75 percent of their average
bottoms unthin 0.75 percent of their average
| lowest top > highest bottom

RBOT

il

The definition for double tops and bottoms is slightly more involved. Consider first the
double top. Starting at a local maximum F;, we locate the highest local maximum F,
occurring after F, in the set of all local extrema in the sample. We require that the two
tops, E, and E,, be within 1.5 percent of their average. Finally, following Edwards and
Magee (1966), we require that the two tops occur at least a month, or 22 trading days,

apart. Therefore, we have:

Definition 5 (Double Top and Bottom) Double tops (DTOP) and bottoms (DBOT) are
characterized by an initial local extremum FE, and a subsequent local extrema E, and E, such
that:

E, = sup{ Py : tz>1],k=2,...,n}
E, = if{Fy : 1>17,k=2,...,n}
and
E| a mazimum
DTOP =. { E1 and E, within 1.5 percent of their average
te—t7 > 22
El o minimum
DBOT = E\ and Ey within 1.5 percent of their average

£t > 22
B. The Identification Algorithm

Our algorithm begins with a sample of prices {#4,. .., Pr} for which we fit kernel regressions,

one for each subsample or window from ¢ to ¢t+{+d—1, where ¢ varies from 1 to T—{—d+1,

12




and ! and d are fixed parameters whose purpose is explained below. In the empirical analysis
of Section I1I, we set {=35 and d=3, hence each window consists of 38 trading days.

The motivation for fitting kernel regressions to rolling windows of data is to narrow our
focus to patterns that are completed within the span of the window—I+d trading days in
our case. If we fit a single kernel regression to the entire dataset, many patterns of various
durations may emerge, and without imposing some additional structure on the nature of the
patterns, it is virtually impossible to distinguish signal from noise in this case. Therefore,
our algorithm fixes the length of the window at {+d, but kernel regressions are estimated on
a rolling basis and we search for patterns in each window. .

Of course, for any fixed window, we can only find patterns that are completed within 4d
trading days. Without further structure on the systematic component of prices m(-), this is
a restriction that any empirical analysis must contend with.® We choose a shorter window
length of { =35 trading days to focus on short-horizon patterns that may be more relevant
for active equity traders, and leave the analysis of longer-horizon patterns to future research.

The parameter d controls for the fact that in practice we do not observe a realization of
a given pattern as soon as it has completed. Instead, we assume that there may be a lag
between the pattern completion and the time of pattern detection. To account for this lag,
we require that the final extremum that completes a pattern occurs on day t+i—1; hence & is
the number of days following the completion of a pattern that must pass before the pattern
is detected. This will become more important in Section I1I when we compute conditional
returns, conditioned on the realization of each pattern. In particular, we compute post-
pattern returns starting from the end of trading day ¢t+1+d, i.e., one day after the pattern
has completed. For example, if we determine that a head-and-shoulder pattern has completed
on day t+{—1 (having used prices from time ¢ through time t+{+d—1), we compute the
conditional one-day gross return as Z; = Yiiy441/Yi114q. Hence we do not use any forward
information in computing returns conditional on pattern completion. In other words, the
lag d ensures that we are computing our conditional returns completely out-of-sample and
without any “look-ahead” bias.

Within each window, we estimate a kernel regression using the prices in that window,

13




hence:

WK (1 — 5)P,
T K — 9)

mp(t) = , t=1,...,T=l-d+1 (14)
where K (2) is given in (10) and A is the bandwidth parameter (see Section C). It is clear
that ha(7) is a differentiable function of 7.

Once the function 7,(7) has been computed, its local extrema can be readily identified
by finding times 7 such that Sgn(v}, (7)) = —Sgn(#h} (m+1)), where 772}, denotes the derivative
of 11, with respect to 7 and Sgn(-) is the signum function. If the signs of 7} (7) 77}, (7+1) are
+1 and —1, respectively, then we have found a local maximum, and if they are —1 and +1,
respectively, then we have found a local minimum. Once such a time T has been identified,
we proceed to identify a maximum or minimum in the original price series { P;} in the range
[t—1, t+1], and the extrema in the original price series are used to determine whether or not |
a pattern has occurred according to the definitions of Section A.

If () = 0 for a given 7, which occurs if closing prices stay the same for several
consecutive days, we need to check whether the price we have found is a local minimum or
maximum. We look for the date s such that s = inf { s > 7 : 1h4(s) # 0 }. We then
apply the same method as discussed -a,bove, except here we compare Sgn(ri}, (7 —1)) and
Sgn(ri,(s)).

One useful consequence of this algorithm is that the series of extrema which it identifies
contains alternating minima and maxima. That is, if the kD extremum is a maximum, then
it is always the case that the (k+1)th extremum is-a minimum, and vice versa.

An important advantage of using this kernel regression approach to identify patterns is
the fact that it ignores extrema that are “too local.” For example, a simpler alternative is
to identify local extrema from the raw price data directly, i.e., identify a price P, as a local
maximum if B_; < F; and B, > P, and vice versa for a local minimum. The problem
with this approach is that it identifies too many extrema, and also yields patterns that are
not visually consistent with the kind of patterns that technical analysts find compelling.

Once we have identified all of the local extrema in the window {t,t+{4+d—1|, we can

proceed to check for the presence of the various technical patterns using the definitions of

14




Section A. This procedure is then repeated for the next window [t+1, t+I+d)], and continues

until the end of the sample is reached at the window [T —.'l—d—l—l, 7).

C. Empirical Examples

To see how our algorithm performs in practice, we apply it to the daily returns of a single
security, CTX, during the five-year period from 1992 to 1996. Figures III-VII plot occur-
rences of the five pairs of patterns defined in Section A that were identified by our algorithm.
Note that there were no rectangle bottoms detected for CTX during this period, so for com-
pleteness we substituted a rectangle bottom for CDO stock which occurred during the same
period.

In each of these graphs, the solid lines are the raw prices, the dashed lines are the kernel
estimators (-}, the circles indicate the local extrema, and the vertical line marks date
t+I1-1, the day that the final extremum occurs to complete the pattern.

Casual inspection by several professional technical analysts seems to confirm the ability of
our automated procedure to match human judgment in identifying the five pairs of patterns
in Section A. Of course, this is merely anecdotal evidence and not meant to be conclusive—
we pfovide these-ﬁgures simply to illustrate the output of a technical ﬁattern recognition

algorithm based on kernel regression.

III. Is Technical Analysis Informative?

Although there have been many tests of technical analysis over the years, most of these tests
have focused on the profitability of technical trading rules.® While some of these studies do
find that technical indicators can generate statistically significant trading profits, they beg
the question of whether or not such profits are merely the equilibrium rents that accrue to
investors willing to bear the risks associated with such strategies. Without specifying a fully
articulated dynamic general equilibrium asset-pricing model, it is impossible to determine
the economic source of trading profits.

Instead, we propose a more fundamental test in this section, one that attempts to gauge

the information content in the technical patterns of Section A by comparing the unconditional
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empirical distribution of returns with the corresponding conditional empirical distribution,
conditioned on the occurrence of a technical pattern. If techmical patterns are informative,
conditioning on them should alter the empirical distribution of returns; if the information
contained in such patterns has already been incorporated into returns, the conditional and
unconditional distribution of returns should be close. Although this is a weaker test of the
effectiveness of technical analysis—informativeness does not guarantee a profitable trading
strategy—it is, nevertheless, a natural first step in a quantitative assessment of technical
analysis.

To measure the distance between the two distributions, we propose two goodness-of-fit
measures in Section A. We apply these diagnostics to the daily returns of individual stocks
from 1962 to 1996 using a procedure described in Sections B to D, and the results are

reported in Sections E and F.

A. Goodness-of-Fit Tests

A simple diagnostic to test the informativeness of the ten technical patterns is to compare the
quantiles of the conditional returns with their unconditional counterparts. If conditioning on
these. technical patterns provides no incremental information, the quantiles of the conditional
returns should be similar to those of unconditional returns. In particular, we compute the
deciles of unéondjtional returns and tabulate the relative frequency 3j of conditional returns

falling into decile j of the unconditional returns, j = 1,...,10:

o number of conditional returns in decile j

6; = . 1
J total number of conditional returns (15)

Under the null hypothesis that the returns are independently and identically distributed and
the conditional and unconditional distributions are identical, the asymptotic distributions of

53- and the corresponding goodness-of-fit test statistic () are given by:

Va(d; —0.10) 2 N(0,0.10(1-0.10)) (16)
_ & (n;—0.10n)?
Q = ;J—OIO'E— S X (17)
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where n; is the number of observations that fall in decile j and n is the total number of
observations (see, for example, DeGroot (1986)).

Another comparison of the conditional and unconditional distributions of returns is pro-
vided by the Kolmogorov-Smirnov test. Denote by {Z1,}72, and {Z2}72, two samples that
are each independently and identically distributed with cumulative distribution functions
Fi(z) and Fy(z), respectively. The Kolmogorov-Smirnov statistic is designed to test the null
hypothesis that F1 = Fj, and is based on the empirical cumulative distribution functions ﬁ',
of both samples:

LS 1<y, i=1, (18)

1 k=1

Fi(2)

where 1(-) is the indicator function. The statistic is given by the expression:

nyng \ /2 . .
tm = (i) s Fi(e) - )l (19

— 00200

Urder the null hypothesis F} = Fj, the statistic 7y, », should be small. Moreover, Smirnov
(1939a, 1939b) derives the limiting distribution of the statistic to be:

o0

lim  Prob( vam, <z) = 3, (-1 exp(-2k’z%) , >0 (20)
min(n1,n2)— 00 k——oc

An approximate o-level test of the null hypothesis can be performed by computing the
statistic and rejecting the null if it exceeds the upper 100a-th percentile for the null distri-
bution given by (20) (see Hollander and Wolfe (1973, Table A.23), Csaki (1984), and Press
et al. (1986, Chapter 13.5)).

Note that the sampling distributions of both the goodness-of-fit and Kolmogorov-Smirnov
statistics are derived under the assumption that returns are independently and identically
distributed, which is not plausible for financial data. We attempt to address this prob-
lem by normalizing the returns of each security, i.e., by subtracting its mean and dividing
by its standard deviation (see Section C), but this does not eliminate the dependence or

heterogeneity. We hope to extend our analysis to the more general non-IID case in future
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research.

B. The Data and Sampling Procedure

We apply the goodness-of-fit and Kolmogorov-Smirnov tests to the daily returns of indi-
vidual NYSE/AMEX and Nasdaq stocks from 1962 to 1996 using data from the Center for
Research in Securities Prices (CRSP). To ameliorate the effects of nonstationarities induced
by changing market structure and institutions, we split the data into NYSE/AMEX stocks
and Nasdaq stocks and into seven five-year periods: 1962 to 1966, 1967 to 1971, and so on.
To obtain a broad cross-section of securities, in each five-year subperiod, we randomly select
ten stocks from each of five market-capitalization quintiles (using mean market-capitalization
over the subperiod), with the further restriction that at least 75 percent of the price obser-
vations must be non-missing during the subperiod.!® This procedure yields a sample of 50
stocks for ea,ch subperiod across seven subperiods (note that we sample with replacement,
hence there may be names in common across subperiods).

As a check on the robustness of our inferences, we perform this sampling procedure twice
to construct two samples, and apply our empirical analysis to both. Although we report
- results only from the ﬁrst sample to conserve space, the results of the second sample are

Qualitatively consistent with the first and are available upon request.

C. Computing Conditional Returns

For each stock in each subperiod, we apply the procedure outlined in Section II to identify
all occurrences of the ten patterns defined in Section A, For each pattern detected, we com-
pute the one-day continuously compounded return d days after the pattern has completed.
Specifically, consider a window of prices {P;} from ¢ to ¢+1+d—1, and suppose that the
identified pattern p is completed at £4-!—1. Then we take the conditional return B? as
log(1l + Riy144+1). Therefore, for each stock, we have ten sets of such conditional returns,
each conditioned on one of the ten patterns of Section A.

For each stock, we construct a sample of unconditional continuously compounded returns
using non-overlapping intervals of length 7, and we compare the empirical distribution func-

tion of these returns with those of the conditional returns. To facilitate such comparisons,

18




we standardize all returns—both conditional and unconditional by subtracting means and

dividing by standard deviations, hence:

Rit — Mean|[Ry)
SD[Rz)

Xt (21)
where the means and standard deviations are computed for each individual stock within each
subperiod. Therefore, by construction, each normalized return series has zero mean and unit
variance.

Finally, to increase the power of our goodness-of-fit tests, we combine the normalized re-
turns of all 50 stocks within each subperiod; hence for each subperiod we have two samples—
unconditional and conditional returns—and from these we compute two empirical distribu-

tion functions that we compare using our diagnostic test statistics.

D. Conditioning on Volume

Given the prominent role that volume plays in technical analysis, we also construct returns
conditioned on increasing or decreasing volume. Specifically, for each stock in each subperiod,
we complite its a\ferage share-turnover during the first and second halves of each subperiod,
71 and 7y, respectively.!! If 7y > 1.2 X 75, we categorize this as a “decreasing volume” event;
if 75 > 1.2 x 71, we categorize this as an “increasing volume” ‘event. If neither of these
coﬁditions holds, then neither event is considered to have occurred.

Using these events, we can construct conditional returns conditioned on two pieces of
information: the occurrence of a technical pattern and the occurrence of increasing or de-
creasing volume. Therefore, we shall compare the empirical distribution of unconditional
‘returns with three conditional-return distributions: the distribution of returns conditioned
on technical patterns, the distribution conditioned on technical patterns and increasing vol-
- ume, and the distribution conditioned on technical patterns and decreasing volume.

Of course, other conditioning variables can easily be incorporated into this procedure,
though the “curse of dimensionality” imposes certain practical limits on the ability to esti-

mate multivariate conditional distributions nonparametrically.
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E. Summary Statistics

In Tables 1 and Ii, we report frequency counts for the number of patterns detected over the
entire 1962 to 1996 sample, and within each subperiod and each market-capitalization quin-
tile, for the ten patterns defined in Section A. Table I contains results for the NYSE/AMEX
stocks, and Table I1 contains corresponding results for Nasdaq stocks.

Table I shows that the most common patterns across all stocks and over the entire sam-
ple period are double tops and bottoms (see the row labelled “Entire”), with over 2,000
occurrences of each. The second most common patterns are the head-and-shoulders and
inverted head-and-shoulders, with over 1,600 occurrences of each. These total counts corre-
spond roughly to four to six occurrences of each of these patterns for each stock during each
five-year subperiod (divide the total number of occurrences by 7 x 50), not an unreasonable
frequency from the point of view of professional technical analysts. Table I shows that most
of the ten patterns are more frequent for larger stocks than for smaller ones, and that they
are relatively evenly distributed over the five-year subperiods. When volume trend is con-
sidered jointly with the occurrences of the ten patterns, Table I shows that the frequency
of patterns is not evenly distributed between increasing (the row labelled “7(+)”) and de-
creasing (the row labelled “r(~)”) volume-trend cases. For example, for the entire sample
of stocks over the 1962 to 1996 sample period, there are 143 occurrences of a broadening
top with decreasing volume trend, but 409 occurrences of a broadening top with increasing
volume trend.

For purposes of comparison, Table I also reports frequency counts for the number of pat-
terns detected in a sample of simulated geometric Brownian motion, calibrated to match the
mean and standard deviation of each stock in each five-year subperiod.'? The entries in the
row labelled “Sim. GBM” show that the random walk model yields very different implications
for the frequency counts of several technical patterns. For example, the simulated sample
has only 577 head-and-shoulders and 578 inverted-head-and-shoulders patterns, whereas the
actual data have considerably more, 1,611 and 1,654, respectively. On the other hand, for
broadening tops and bottoms, the simulated sample contains many more occurrences than

the actual data, 1,227 and 1,028 as compared to 725 and 748, respectively. The number of
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triangles is roughly comparable across the two samples, but for rectangles and double tops
and bottoms, the differences are dramatic. Of course, the simulated sample is only one real-
ization of geometric Brownian motion, so it is difficult to draw general conclusions about the
relative frequenciés. Nevertheless, these simulations point to important differences between
the data and independently and identically distributed lognormal returns.

To develop further intuition for these patterns, Figures VIII and IX display the cross-
sectional and time-series distribution of each of the ten patterns for the NYSE/AMEX and
Nasdaq samples, respectively. Each symbol represents a pattern detected by our algorithm,
the vertical axis is divided into five quintiles, the horizontal axis is calendar time, and
alternating symbols (diamonds and asterisks) represent distinct subperiods. These graphs
show that the distribution of patterns is not clustered in time or among a subset of securities.

Table II provides the same frequency counts for Nasdag stocks, and despite the fact that
we have the same number of stocks in this sample (50 per subperiod over seven subperiods),
there are considerably fewer patterns detected than in the NYSE/AMEX case. For example,
the Nasdaq sample yields only 919 head-and-shoulders patterns, whereas the NYSE/AMEX
sample contains 1,611. Not surprisingly, the frequency counts for the sample of simulated
geometric Brownian motion are similar to those in Table 1. |

Tables II1 and IV report summary statistics—means, standard deviations, skewness, and
excess kurtosis—of unconditional and conditional normalized returns of NYSE/AMEX and
Nasdaq stocks, respectively. These statistics show considerable variation in the different re-
turn populations. For example, the first four moments of normalized raw returns are 0.000,
1.000, 0.345, and 8.122, respectively. The same four moments of post-BTOP returns are
—0.005, 1.035, —1.151, and 16.701, respectively, and those of post-DTOP returns are 0.017,
0.910, 0.206, and 3.386, respectively. The differences in these statistics among the ten con-
ditional return populations, and the differences between the conditional and unconditional
return populations, suggest that conditioning on the ten technical indicators does have some

effect on the distribution of returns.
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F. Empirical Results

Tables V and VI reports the results of the goodness-of-fit test (16)-(17) for our sample of
NYSE and AMEX (Table V) and Nasdaq (Table VI) stocks, respectively, from 1962 to 1996
for each of the ten technical patterns. Table V shows that in the NYSE/AMEX sample,
the relative frequencies of the conditional returns are significantly different from tHOSe of the
unconditional returns for seven of the ten patterns considered. The three exceptions are the
conditional returns from the BBOT, TTOP, and DBOT patterns, for which the p-values of
the test statistics () are 5.1 percent, 21.2 percent, and 16.6 percent respectively. These results
yield mixed support for the overall eflicacy of technical indicators. However, the results of
Table VI tell a différent story: there is overwhelming significance for all ten indicators in the
Nasdaq sample, with p-values that are zero to three significant digits, and tesf statistics @
that range from 34.12 to 92.09. In contrast, the test statistics in Table V range from 12.03
to 50.97. ,

One possjble explanation for the difference between the NYSE/AMEX and Nasdaq
samples is a difference in the power of the test because of different sample sizes. If the
NYSE/AMEX sample contained fewer conditional returns, i.e., fewer patterns, the corre-
sponding test statistics might be subject to greater sampling varia,tioﬁ and lower power.
However, this explanation can be ruled out from the frequency cou,ﬁts of Tables I and II—
the number of patterns in the NYSE/AMEX sample is considerably larger than those of the
Nasdaq sample for all ten patterns. Tables V and VI seem to suggest important differences
in the informativeness of technical indicators for NYSE/AMEX and Nasdaq stocks.

Table VII and VIII report the results of the Kolmogorov-Smirnov test (19) of the equality
* of the conditional and unconditional return distributions for NYSE/AMEX (Table VII) and
Nasdag (Table VIII) stocks, respectively, from 1962 to 1996, in five-year subperiods, and
in market-capitalization quintiles. Recall that conditional returns are defined as the one-
day return starting three days following the conclusion of an occurrence of a pattern. The
p-values are with respect to the asymptotic distribution of the Kolmogorov-Smirnov test
statistic given in (20).

Table VII shows that for NYSE/AMEX stocks, five of the ten patterns-—HS, BBOT,
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RTOP, RBOT, and DTOP—yield statistically significant test statistics, with p-values rang-
ing from 0.000 for RBOT to 0.021 for DTOP patterns. However, for the other five patterns,
the p-values range from 0.104 for IHS to 0.393 for DBOT, which implies an inability to
distinguish between the conditional and unconditional distributions of normalized returns.

When we condition on declining volume trend as well, the statistical significance declines
for most patterns, but increases the statistical significance of TBOT patterns. In contrast,
conditioning on increasing volume trend yields an increase in the statistical significance of
BTOP patterns. This difference may suggest an important role for volume tfend m TBOT
and BTOP patterns. The difference between the increasing and decreasing volume-trend
conditional distributions is statistically insignificant for almost all the patterns (the sole
exception is the TBOT pattern). This drop in statistical significance may be due to a lack
of power of the K-S test given the relatively small sample sizes of these conditional returns
(see Table I for frequency counts).

Table VIII reports corresponding results for the Nasdaq sample and as in Table VI, in
contrast to the NYSE/AMEX results, here all the patterns are statistically significant at
‘the 5 percent level. This is éspecially significant because the the Nasdaq. sample exhibits far
fewer patterns than the NYSE/AMEX sample (see Tables I and II), hence the K-S test is
likely to have lower power in this case. |

As with the NYSE/AMEX sample, volume trend seems to provide little incremental
information for the Nasdaq sample except in one case: increasing volume and BTOP. And
except for the TTOP pattern, the K-S test still cannot distinguish between the decreasing
and increasing volume-trend conditional distributions, as the last pair of rows of Table VIII’s

first panel indicates.

IV. Monte Carlo Analysis

Tables IX and X contain bootstrap percentiles for the Kolmogorov-Smirnov test of the equal-
ity of conditional and unconditional one-day return distributions for NYSE/AMEX and Nas-
daq stocks, respectively, from 1962 to 1996, and for market-capitalization quintiles, under

the null hypothesis of equality. For each of the two sets of market data, two sample sizes,
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m; and mg, have been chosen to span the range of frequency counts of patterns reported
in Tables I and II. For each sample size m;, we resample one-day normalized returns (with
replacement) to obtain a bootstrap sample of m; observations, compute the Kolmogorov-
Smirnov test statistic (against the entire sample of one-day normalized returns), and repeat
this procedure 1,000 times. The percentiles of the asymptotic distribution are also reported
for comparison under the column “y”. |

Tables IX and X show that for a broad range of sample sizes and across size quintiles,
subperiod, and exchanges, the bootstrap distribution of the Kolmogorov-Smirnov statistic

is well approximated by its asymptotic distribution (20).

V. Conclusion

In this paper, we have proposed a new approach to evaluating the efficacy of technical anal-

ysis. Based on smoothing techniques such as nonparametric kernel regression, our approach

incorporates the essehce of technical analysis: to identify regularities in the time series of

prices by extAracting nonlinear patterns from noisy data. While human judgment is still

superior to most computational algorithms in the area of visual pattern recognition, recent

advances in statistical learning theory have had successful applications in fingerprint identi-

fication, handwriting analysis, and face recognition. Technical analysis may well be the next |
frontier for such methods.

When applied to many stocks over many time periods, we find that certain technical
patterns do provide incremental information, especially for Nasdaq stocks. While this does
not necessarily imply that technical analysis can be used to generate “excess” trading profits,
it does raise the possibility that technical analysis can add value to the investment process.

Moreover, our methods suggest that technical analysis can be improved by using auto-
mated algorithms such as ours, and that traditional patterns such as head-and-shoulders and
rectangles, while sometimes effective, need not be optimal. In particular, it may be possible
to determine “optimal patterns” for detecting certain types of phenomena in financial time
series, e.g., an optimal shape for detecting stochastic volatility or changes in regime. More-

over, patterns that are optimal for detecting statistical anomalies need not be optimal for
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trading profits, and vice versa. Such considerations may lead to an entirely new branch of
technical analysis, one based on selecting pattern recognivtion algorithms to optimize specific

objective functions. We hope to explore these issues more fully in future research.
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Footnotes

1A similar approach has been proposed by Chang and Osler (1994) and Osler and Chang

{1995) for the case of foreign-currency trading rules based on a head-and-shoulders pat-
tern. They develop an algorithm for automatically detecting geometric patterns in price or
exchange data by looking at properly defined local extrema.

2See, for example, Beymer and Poggio (1996), Poggio and Beymer (1996) and Riesenhu-

ber and Poggio (1997).
' 3Despite the fact that K(z) is a probability density function, it plays no probabilistic
role in the subsequent analysis—it is merely a convenient method for computing a weighted
average, and does not imply, for example, that X is distributed according to K(z) (which
would be a parametric assumption).

“However, there are other bandwidth-selection methods that yield the same asymptotic
~ optimality properties but which have different implications for the finite-sample properties
of kernel estimators. See Hardle (1990) for further discussion.

SSpecifically, we produced fitted curves for various bandwidths and compared their ex-
trema to the original price series visually to see if we were fitting more “noise” than “signal,”
and asked several professional technical analysts to do the same. Through this informal pro-
cess, we settled on the bandwidth of 0.3 x A* and used it for the remainder of our analysis.
This procedure was followed before we performed the statistical analysis of Section III, and
we made no revision to the choice of bandwidth afterwards.

%See Simonoff (1996) for a discussion of the problems with kernel estimators and alter-
natives such as local polynomial regression.

7 After all, for two consecutive maxima to be local maxima, there must be a local mininum
in between, and vice versa for two consecutive minima.

8If we are willing to place additional restrictions on m(-), e.g., linearity, we can obtain
considerably more accurate inferences even for partially completed patterns in any fixed
window.

For example, Chang and Osler (1994) and Osler and Chang (1995) propose an algorithm
for automatically detecting head-and-shoulders patterns in foreign exchange data by looking
at properly defined local extrema. To assess the efficacy of a head-and-shoulders trading rule,
they take a stand on a class of trading strategies and compute the profitability of these across
a sample of exchange rates against the U.S. dollar. The null return distribution is computed
by a bootstrap that samples returns randomly from the original data so as to induce temporal
independence in the bootstrapped time series. By comparing the actual returns from trading
strategies to the bootstrapped distribution, the authors find that for two of the six currencies
in their sample (the yen and the Deutsche mark), trading strategies based on a head and
- shoulders pattern can lead to statistically significant profits. See, also, Neftci and Policano
(1984), Pruitt and White (1988), and Brock, Lakonishok, and LeBaron (1992).

191f the first price observation of a stock is missing, we set it equal to the first non-missing
price in the series. If the ¢-th price observation is missing, we set it equal to the first
non-missing price prior to t.

"For the Nasdaq stocks, 71 is the average turnover over the first third of the sample, and
Ty 1s the average turnover over the final third of the sample.
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2In particular, let the price process satisfy
dP(t) = uP(t)dt + oP(t)dW (D) | (22)

where W (t) is a standard Brownian motion. To generate simulated prices for a single security
in a given period, we estimate the security’s drift and diffusion coeficients by maximum
likelihood and then simulate prices using the estimated parameter values. An independent
price series is simulated for each of the 350 securities in both the NYSE/AMEX and the
Nasdag samples. Finally, we use our pattern recognition algorithm to detect the occurrence
of each of the ten patterns in the simulated price series.
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Figure III. Head-and-shoulders and inverse head-and-shoulders.
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{a) Broadening Top {b) Broadening Bottom

Figure IV. Broadening tops and bottoms.

(a) Triangle Top (b) Triangle Bottom

Figure V. Triangle tops and bottoms.
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{a) Rectangle Top (b) Rectangle Bottom

Figure VI. Rectangle tops and bottoms.

(a) Double Top (b) Double Bottom

Figure VII. Double tops and bottoms.
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Figure VIII. Distribution of patterns in NYSE/AMEX sample.
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Table I

Frequency counts for 10 technical indicators detected among NYSE/AMEX stocks from 1962 to
1996, in S-year subperiods, in size quintiles, and in a sample of simulated geometric Brownian
motion. In each 5-year subperiod, 10 stocks per quintile are selected at random among stocks with
at least 80% non-missing prices, and each stock’s price history is scanned for any occurrence of the
following 10 technical indicators within the subperiod: head-and-shoulders (HS), inverted head-
and-shoulders (IHS), broadening top (BTOP), broadening bottom (BBOT), triangle top (T'TOP),
triangle bottom (TBOT), rectangle top (RTOP), rectangle bottom (RBOT), double top (DTOP),
and double bottem (DBOT). The ‘Sample’ column indicates whether the frequency counts are
conditioned on decreasing volume trend (‘r(~)’), increasing volume trend (‘r(,+)’), unconditional
(‘Entire’), or for a sample of simulated geometric Brownian motion with parameters calibrated to
match the data (‘Sim. GBM’).

Sample Raw HS [HS BTOP BBOT TTOF TBOT RTOP RBOT DTOP DBOT
AN Stocks, 1962 to 1996
Entire 423,556 1611 1654 725 T4B 1294 1193 1482 - 1616 2076 2075
Sim. GBM 423,556 577 578 1227 1028 1049 1176 122 113 535 574
T(~} — 655 593 143 220 666 710 582 637 691 974
(.~} — 553 614 409 337 300 222 523 552 776 533
Smallest Quintile, 1962 to 1996
Entire 84,363 182 181 78 97 203 159 265 320 261 271
Sim. GBM 84,363 82 99 279 256 269 295 18 - 16 129 127
7(~} — 90 81 13 42 122 119 113 151 78 161
(.~} — 58 76 51 37 41 22 99 120 124 . 64
‘ 2nd Quintile, 1962 to 1996
Entire 83,986 309 321’ 146 150 255 228 299 322 372 420
Sim. GBM 83,986 108 105 291 251 261 278 20 17 106 126
() — 123 126 25 48 135 147 130 149 113 211
() —_ 112 126 90 63 55 39 104 110 153 107
3rd Quintile, 1962 to 1996
Entire 84,420 361 388 145 161 291 247 334 399 458 443
Sim. GBM 84,420 122 120 268 222 212 249 24 31 115 125
() — 152 131 20 49 151 149 130 160 154 215
(. — 125 146 83 G6 67 44 121 142 179 106
4th Quintile, 1962 to 1996
Entire 84,780 332 317 176 173 262 255 259 264 424 420
Sim. GBM 84,780 143 127 249 210 183 210 35 24 116 122
T(~ — 131 115 36 42 138 145 85 97 144 184
(A — 110 126 103 89 56 55 102 96 147 118
Largest Quintile, 1962 to 1996
Entire 86,007 427 447 180 167 283 304 325 311 561 521
Sim. GBM 86,007 122 127 140 89 124 144 25 25 69 74
() —_ 149 140 419 39 120 150 124 100 202 203
() — 148 140 82 82 81 62 B 84 173 138




Table I (continued)

Sample Raw HS [IHS BTOP BBOT TTQOP TBOT RTOP RBOT DTOP DBOT
: All Stocks, 1962 to 1966
. Entire 55,254 276 278 85 103 179 165 316 354 356 362
Sim. GBM 55,254 656 58 144 126 - 129 139 9 16 60 68
7{~) — 104 88 26 29 93 109 130 141 113 188
() — 9% 112 44 39 37 25 130 122 137 88
All Stocks, 1967 to 1971
Entire 60,209 179 175 112 134 227 172 115 117 239 258
Sim. GBM 60,200 92 70 167 148 150 180 19 16 84 77
7(~) — 68 64 16 45 126 111 42 39 80 143
{7} —~ 71 69 68 57 47 20 41 11 87 53
All Stocks, 1972 to 1976
Entire 59,915 152 162 82 93 165 136 17 182 218 223
Sim. GBM 59,915 75 8 183 154 156 178 16 10 70 71
T{\) — 64 &5 16 23 88 78 60 64 53 97
(") — 54 62 2 . 50 32 21 6l 67 80 59
' All Stocks, 1977 to 1981
Entire 62,133 223 206 134 110 188 167 146 182 274 290
Sim. GBM 62,133 83 88 245 200 188 210 18 12 90 115
7{~) — 114 &1 24 39 100 97 54 60 82 140
() _ 56 03 78 44 35 36 53 71 113 76
All Stocks, 1982 to 1986
Entire 61,984 242 256 106 108 182 190 182 207 313 299
Sim. GBM 61,984 115 120 188 144 152 169 31 23 99 87
() — 101 14 28 30 93 104 70 95 109 124
7(”) — B9 o4 51 62 46 40 73 68 116 85
‘ All Stocks, 1987 to 1991
Entire 61,780 240 241 104 98 180 169 260 259 287 285
Sim. GBM 61,780 68 79 168 = 132 131 150 11 10 76 68
() — 95 89 16 30 86 101 103 102 105 137
() — 81 79 68 43 53 36 73 87 100 68
All Stocks, 1992 to 1996
Entire 62,191 299 336 102 102 173 194 292 315 389 368
Sim. GBM 62,191 88 78 132 124 143 150 18 26 56 88
() — 109 132 17 24 80 110 123 136 149 145
() — 106 105 58 42 50 35 92 96 143 104




Table II

Frequency counts for 10 technical indicators detected among NASDAQ stocks from 1962 to 1996,
in 5-year subperiods, in size quintiles, and in a sample of simulated geometric Brownian motion.
In each 5-year subperiod, 10 stocks per quintile are selected at random among stocks with at
least 80% non-missing prices, and each stock’s price history is scanned for any occurrence of the
following 10 technical indicators within the subperiod: head-and-shoulders (HS), inverted head-
and-shoulders (THS), broadening top (BTOP), broadening bottom (BBOT), triangle top (TTOP),
triangle bottom (TBOT), rectangle top (RT'OP), rectangle bottom (RBOT), double top (DTOP),
and double bottom (DBOT). The ‘Sample’ column indicates whether the frequency counts are
conditioned on decreasing volume trend (‘r(~.)’), increasing volume trend (‘r(.»)’), unconditional
(‘Entire’), or for a sample of simulated geometric Brownian motion with parameters calibrated to
match the data (‘Sim. GBM’).

Sample Raw Hs IHs BTOP BBOT TTOP TBOT RIOP RBOT DTOP DBOT

All Stocks, 1962 to 1996

Entire 411,010 919 817 414 508 850 789 1134 1320 1208 1147
Sim. GBM 411,010 434 447 1297 1139 1169 1309 96 91 567 579
7(~) — 408 268 69 133 429 460 488 550 339 580
() — 284 325 234 209 185 125 g1 461 474 229
Smailest Quintile, 1962 to 1996
Entire 81,754 84 64 41 73 11 93 165 218 113 125
Sim. GBM  81,75¢ 85 84 341 289 334 367 1 . 12 140 125
T(~) — % 25 6 20 56 59 77 102 31 81
() — 31 23 31 30 24 15 59 85 46 17
2nd Quintile, 1962 to 1996
Euntire 81,336 191 138 68 ag 161 148 242 305 219 176
Sim. GBM 81,336 67 84 243 225 219 229 24 12 99 124
T(~) — 94 51 1 28 86 109 111 131 69 101
() — 66 57 46 38 45 22 85 120 90 42
3rd Quintile, 1962 to 1996
Entire B1,772 224 186 105 121 183 155 235 244 279 267
Sim. GBM 81,772 69 86 227 210 214 239 15 14 105 100
() — 108 66 23 35 87 91 .90 84 78 145
() — 79 56 49 39 29 84 86 122 58
4th Quintile, 1962 to 1996
Entire 82,727 212 2M4 92 116 187 179 296 303 289 297
Sim. GBM 82,727 104 92 242 219 209 255 23 26 115 97
T() — 88 68 12 26 101 101 127 141 77 143
() — 62 83 57 56 3 22 104 93 118 66
Largest Quintile, 1962 to 1996
Entire 83,421 208 215 108 110 208 214 196 250 308 282
Sim. GBM 83,421 109 101 244 196 193 219 23 27 108 133
T(~) — 82 58 17 24 99 100 83 92 84 110

7{) — 54 83 44 36 43 37 59 77 98 46




Table II (continued)

Sample Raw HS 1HS BTOP BBOT TTOP TBOT RTOFP RBOT DTOP DBOT
All Stocks, 1962 to 1966
Entire 55,969 274 268 72 99 182 144 288 329 326 342
Sim. GBM 55,969 69 63 163 123 137 149 24 22 77 90
T(~) — 129 99 10 23 104 98 115 136 96 210
() —_ 83 103 48 51 37 23 101 116 144 64
All Stocks, 1967 to 1971
Entire 60,663 115 120 104 123 227 171 65 83 196 200
Sim. GBM 60,563 58 61 194 184 181 188 9 8 90 83
7(~) — 61 29 16 40 127 123 26 39 49 137
7() — 24 57 71 51 - 45 19 25 16 86 17
All Stocks, 1972 to 1976
Entire 51,446 34 30 14 30 29 28 51 55 55 58
Sim. GBM 51,446 32 37 115 113 107 110 5 6 46 46
T(N) — 5 4 0 4 5 7 12 8 3 8
() — 8 7 1 2 2 0 5 12 8 3
All Stocks, 1977 to 1981
Entire 61,972 56 53 41 36 52 73 57 65 a9 96
Sim. - GBM 61,972 90 84 236 165 176 212 19 19 110 98
() — 7 7 1 2 4 8 12 12 7 9
7() — 6 6 5 1 4 o 5 8 7 6
AJl Stocks, 1982 to 1986
Entire " BL110 71 64 46 44 97 107 109 115 120 o7
Sim. GBM 61,110 . 86 20 162 168 147 174 23 21 97 98
() — 37 19 8 14 - . 46 58 45 52 40 48
7(") — 21 25 24 18 26 22 42 42 38 24
. All Stocks, 1987 to 1991
Entire 60,862 158 120 50 61 120 109 " 265 312 177 155
Sim. GBM 60,862 59 57 229 187 205 244 7 T 79 38
7(~) — 79 48 11 19 73 69 130 140 50 69
() — 58 56 33 30 26 28 100 122 89 55
All Stocks, 1992 to 1996
Entire 59,088 211 162 87 115 143 157 299 361 245 199
Sim. GBM 59,088 40 55 198 199 216 232 9 8 68 76
{~) — 90 64 24 31 70 o7 148 163 94 99
() — 84 7l 52 56 45 33 113 145 102 60




Table III

‘Summary statistics (mean, standard deviation, skewness, and excess kurtosis) of raw and condi-
tional 1-day normalized returns of NYSE/AMEX stocks from 1962 to 1996, in 5-year subperiods,
and in size quintiles. Conditional returns are defined as the daily return three days following
the conclusion of an occurrence of one of 10 technical indicators: head-and-shoulders (HS), in-
verted head-and-shoulders (IHS), broadening top (BTOP), broadening bottom (BBOT), triangle
top (TTOP), triangle bottom (TBOT), rectangle top (RT'OP), rectangle bottom (RBOT), double
top (DTOP), and double bottom (DBOT). All returns have been normalized by subtraction of

their means and division by their standard deviations.

Moment Raw HS IHS BTOP BBOT TTOP TBOT RTOP RBOT DTOP DBOT
All Stocks, 1962 to 1996
Mean —0.000 —0.038 0.040 —0.005 —0.062 0.021 ~0.009 0.009 0.014 0.017 —0.001
5.D. 1.000 0.867 0.937 1.035 = 0.979 0.955 0.958 0.865 0.883 0.810 0.999
Skew 0.345 0.135 0.660 —1.151 0.090 0.137 0.643 —0.420 0.110 0.206 0.460
Kurt 8.122 2.428 4527 16.701 3.169 3.293 7.061 7.360 4.194 3.386 7.374
Smallest Quintile, 1962 to 1996
Mean ~0.000 ~0.014 0.036 -0.093 -0,188 0.036 —0.020 0.037 —0.093 0.043 —0.055
S.D. 1.000 ~ 0.B54 1.002 0.940 0.850 0.937 1.157 0.833 0.986 0.950 0.962
Skew 0.697 0.802 1.337 -1 —0.367 0.861 2.592 —0.187 0.445 0.511 0.002
Kurt 10.873 3.870 7.143 6.701 0.575 4.185 12.532 1.793 4.384 2.581 3.989
2nd Quintile, 1962 to 1996
Mean —0.000 ~0.069 0.144 0.061 —0.113 *0.003 0.035 0.018 0.019 0.067 —0.011
5.D. - 1.000 0.772 1.031 1.278 1.004 0.913 0.965 0.979 0.868 0.776 1.069
Skew - 0.392° 0.223 1.128  -3.296 0.485 —0.529 0.166 —1.375 0.452 0.392 1.728
Kurt 7.836 0.657 ) 6.734 32.750 3.779 3.024 4.987 17.040 3.914 2.151 15.544
' o 3rd Quintile, 1962 to 1996
Mean —0.000 —0.048 —0.043 --0.076 —0.056 0.036 0.012 0.075 0.028 —~0.039 —0.034
S5.D. 1.000 0.388 0.856 0.894 0.925 0.973 0.796 0.798 0.392 0.956 1.026
Skew 0.246 —0.465 0.107 -0.023 0.233 0.538 0.166 0.678 —0.618 0.013 —0.242
Kurt 7.466 3.239 1.612 1.024 0.611 2.995 0.586 3.010 4.769 4.517 3.663
4th Quintile, 1962 to 1996
Mean —0.000 ~0.012 0.022 0.115 0.028 0.022 —0.014 ~0.113 0.065 0.015 —0.006
s.D. 1.000 0.964 0.903 0.990 1.093 0.986 0.959 0.854 0.821 0.858 0.992
Skew 0.222 0.055 0.592 0.458 0.537 —0.217 —-0456 ~0.415 0.820 0.550 —0.062
Kurt 6.452 1.444 1.745 1.251 2.168 4.237 8.324 4.311 3.632 1.719 4691
Largest Quintile, 1962 to 1996
Mean —0.000 —0.038 0.054 —0.081 —0.042 0.010 —0.049 0.009 0.060 0.018 0.067
5.D. 1.000 0.843 0.927 0.997 0.951 0.964 0.965 0.850 0.820 0.971 0.941
Skew 0.174 0.438 0.182 0.470 —1.099 0.089 0.357 -~0.167 -—0.140 0.011 0.511
Kurt 7.992 2.621 3.465 3.275 6.603 2.107 2.509 0.816 3.179 3.498 5.035




Table IIT (continued)

Moment Raw HS IHS BTOP BBOT TTOP TBOT RTOP RBOT DTOP DBOT
All Stocks, 1962 to 1966
Mean —~0.000 0.070 0.080 0.1569 0.079 —-0.033 -0.03% —-0.001 0.019 —-0.071 —0.100
S.D. 1.000 0.797 0.925 0.825 1.085 1.068 1.011 0.961 0.814 0.85% 0.962
Skew 0.563 0.159 0.462 0.363 1.151 —0.158 1.264 —-1.337 —0.341 —0.427 —0.876
Kurt 9.161 0.612 1.728 0.657 5.063 2.674 4.826 17.161 1.400 3.416 5.622
All Stocks, 1967 to 1971
Mean -0.000 —0.044 0.079¢ —-0.035 —0.056 0.025 0.057 -—0.101 0.110 0.093 0.079
S.D. 1.000 0.809 0.944 0.783 0.850 0.885 0.886 0.831 0.863 1.083 0.835
Skew 0.342 0.754 0.666 0.304 0.085 0.650 0.697 -1.393 0.395 1.360 0.701
Kurt 5.810 3.684 2.725 0.706 0.141 3.099 1.659 8.596 3.254 4 487 1.853
All Stocks, 1972 to 1976
Mean —0.000 —0.035 0.043 0.101 —0.138  —0,045 -0.010 —0.025 -0.003 —0.051 —0.108
S.D. 1.000 1.015 0.810 0.985 0.918 0.945 0.922 0.870  0.754 0914 0.903
Skew 0.316 —0.334 0.717  -0.699 0.272 -1.014 0.676 0.234 0.199 0.056 —0.366
Kurt 6.520 2.286 1.565 6.562 1.453 5.261 4.912 3.627 2.337 3.520 5.047
All Stocks, 1977 to 1981
Mean —-0.000 —-0.138 —0.040 0.076 —0.114 0.135 —-0.050 —0.004 0.026 0.042 0.178
5.D. 1.000 0.786 0.863 1.015 0.989 1.041 1.011 0.755 0.956 0.827 1.095
Skew 0.466 —0.304 0.052 1.59¢ —0.033 0.776 0.110 —0.084 0.534 0.761 2.214
Kurt 6,419 1.132 1.048 4.961 —0.125 2.964 0.989 1.870 2.184 2.369 15.290
) All Stocks, 1982 to 1986
Mean —0.000 —0.099 —0.007 0.011 0.095 -0.114 -0.067 0.050 0.005 0.011 —0.013
5.D. 1.000 0.883 1.002 1.109 0.956 0.924 0.801 0.826 0.934 0.850 1.026
- Skew 0.460 0.464 0.441 0.372 --0.165 0.473 -—1.24% 0.231 0.467 0.528 0.867
" Kurt 6.799 2.280 6.128 2.566 2.735 3.208 5.278 1.108 4.234 1.515 7.400
All Stocks, 1987 to 1991
Mean —0.000 -0.037 0033 -0.001 —0.040 0.053 0.003 0.040 -—0.020 —0.022 —0;017
S.D. 1.000 0.848 0.895 0.955 0.818 = 0.8587 0.981 0.894 0.833 0.873 1.052
Skew —0.018 —0.526 0.272 0.108 0.231 0.165 —1.214 0.293 0.124 —1.184 —0.368
Kurt 13.478 3.835 4.395 2.247 1.469 4.422 9.586 1.646 3.973 4.808 4.297
All Stocks, 1992 to 1996
Mean —-0.000 —0.014 0.069 —-0.231 —-0.272 0.122 0.041 0.082 0.011 0.102 —0.016
5.D. 1.000 0.935 1.021 1.406 1.187 0.953 1.078 0.814 0.996 0.960 1.035
Skew 0.308 0.545 1.305 —-3.988 —0.502 —0.190 2,460 —0.167T —0.129 —0.09L 0.379
Kurt 8.683 2.249 6.684 27.022 3.947 1.235 12.883 0.506 6.399 1.507 3.358




Table IV

Summary statistics (mean, standard deviation, skewness, and excess kurtosis) of raw and condi-
tional 1-day normalized returns of NASDAQ stocks from 1962 to 1996, in 5-year subperiods, and
in size quintiles. Conditional returns are defined as the daily return three days following the con-
clusion of an occurrence of one of 10 technical indicators: head-and-shoulders (HS), inverted head-
and-shoulders (IHS), broadening top (BTOP), broadening bottom (BBOT), triangle top (TTOP),
triangle bottom (TBOT), rectangle top (RTOP), rectangle bottom (RBOT), double top (DTOP),
and double bottom (DBOT). All returns have been normalized by subtraction of their means and
division by their standard deviations. '

Moment Raw HS IHS BTOF BBOT TTOP TBOT RTOP RBOT DTOP DBOT

"All Stocks, 1962 to 1996

Mean 0.000 —0.016 0.042 -0.009 0008 —0.020 0.017 0.052 0.043 0.003 —0.036
s.D. 1.000 0.907 0.994 0.960 0.995 0.984 0.932 0.948 0.929 ~ 0.933 0.880
Skew 0.608 —-0.017 1.290 0.397 0.586 0.895 0.716 0.710 0.755 04068 —0.104
Kurt 12.728 3.039 8.774 3.246 2.783 6.692 3.844 5.173 4.368 4.150 2.062

Smaliest Quintile, 1962 to 1996

Mean —0.000 0.018 —0.032 0.087 —0.1563 0.059 0.108 0.136 0.013 0.040 0.043
5.D. 1.000 0.845 1.319 0.874 0.894 1.113 1.044 1.187 0.982 0.773 0.906
Skew 0.754 0.325 1.756 —0.239 —-0.109 2.727 2.300 1.741 0.199 0.126 —0.368
Kurt 15.859 1.096 4.221 1.490 0.571 14.270 10.594 8.670 1.918 0.127 0.730
. 2nd Quintile, 1962 to 1996
Mean —0.000 —0.064 0.076 -0.10% —-0.093 —0.085 —0.038 —0.066 —0.015 - 0.039 —0.034
S.D. 1.000 0.848 0.991 1.106 1.026 0.805 0.997 0.898 0.897 1.119 - 0.821
Skew 0.844 0.406 1.882 —0.122 0.635 . 0.036 0.455 —0.579" 0.416 1.19%6 ~ 0.190
Kurt 16.738 2.127 11.561 2.496 - 3.458 0.689 1.332 2.699 3.871 3.910 0.777
drd Quintile, 1962 to 1996
Mean -0.000  0.033 0.028 0.078 0.210 —0.030 0.068 0.117 0.210 —0.109 —0.075 .
S.D. 1.000 0.933 0.906 0.931 0.971 0.825 1.002 0.992 0.970 0.997 0.973
Skew 0.698 0.223 0.529 0.656 0.326 0.539 0.442 0.885 0.820 —0.163 0.123
Kurt 12.161 1.520 1.526 1.003 0.430 1.673 1.038 2.908 4.915 5.266 2.573
4th Quintile, 1962 to 1996
Mean 0.000 —-0.079 0.037 —0.006 —0.044 -—0.080 0.007 0.084 0.044 0.038 —0.048
8.D. 1.000 0.911 0.957 0.992 0.975 1.076 0.824 0.890 0.851 0.857 0.819
Skew 0.655 ~0.456 2.671 —0.174 0.385 0.554 0.717 0.290 1.034 0.154 —0.149
Kurt 11.043 2.525 19.593 2.163 1.601 7.723 3.930 1.565 2.982 2.807 2.139
Largest Quintile, 1962 to 1996
Mean 0.000 0.026 0.058 —0.070 0.031 0.052 —0.013 0.001 —-0.024 0.032 —o0.018
S.D. 1.000 0.952 1.002 0.895 1.060 1076 0.871 0.794 0.958 .0.844 0.877
Skew 0.100 —0.266 —0.144 1.699 1.226 0.409 0.025 0.105 1.300 0.315 —0.363

Kurt 7.976 5.807 4.367 8.371 5.778 1.970 2.696 1.336 7.503 2.091 2.241




Table IV (continued)

Moment  Raw HS 1HS BTOP BBOT TTOP TBOT RTOP RBOT DTOP DBOT
All Stocks, 1962 to 1966
Mean —0.000 0.116  0.041 0099 009 0028 —0066 0.100  0.010 0.096 0.027
3.D. 1.000 0.912 0.949  0.989 1.039 1015 0.839  0.925  0.873 1039 0.840
Skew 0.575 0.711 1.794  0.252 1.258 1.601 0.247 2.016 1.021 0533  —0.351
Kurt 6.5565 1.538 9.115 2.560  6.445 7.974 1.324  13.653  5.603 6.277 2.243
All Stocks, 1967 to 1971
Mean —0.000 —0.127 0.114 0121 0016  0.045 0077 0.154  0.136 —0.000 0.006
S.D. 1.000 0.864 0.805 0.995 1.013 0.976  0.955 1.016 1.118 0.882 0.930
Skew 0.734  —0.097 1.080 0574  0.843 1.607  0.545 0.810 1.925 0.465 0.431
Kurt 5.194 1.060 2509  0.380 2928  10.129 1.908 1.712 5.815 1.585 2.476
All Stocks, 1972 to 1976
Mean 0.000 0.014 0.089 -—0403 —0.034 —0.132 —0.422 —0.076 0.108 —0D.004 —0.163
S.D. 1.000 0.575 0.908 0.569  0.803 0.618  0.830 0.886 0910 0.924 0.564
Skew 0.466 —0.281 0.973 —1.17T6  0.046 —0.064 —1503 -—2.728 2047 —0.551 —0.791
Kurt 17.228 2.194 1.828  0.077 0587 —0.444 2.137  13.320  9.510 1.434 2.010
All Stocks, 1977 to 1981 ‘
Mean —0.000 0.025 -0212 —0.112 —0.056 -0.110 0.08  0.055 0.177 0.081.  0.040
S.D. 1.000 0.769 1.025 1.091 0838 0683  0.834 1.036 1.047 0.986 0.880
Skew 1.092 0.230 —1.516 —0.731  0.368 0430  0.249 2.391 2571 1520 —0.291
Kurt 20.043 1.618 4397 3966  0.460 0.962  4.722 9137  10.961 7.127  3.682
All Stocks, 1982 to 1986 )
Mean 0000 —0.147 0.204 —0.137 -0.001 —0053 —0.022 —0.028  0.116 -0.224 —0.052
5D. 1.000 1073 1.442 0.804 1.040 0.982 1.158°  0.910  0.830 0.868 1.082
Skew 1.267 —1.400 2.192 0.001  0.048 1.370 1.690  —0.120 0.048 0.001 —0.091
Kurt 21.789 4.899  10.530 0.863  0.732 8.460  7.086 0.780  0.444 1.174 0.818
7 ' All Stocks, 1987 to 1991 _
Mean . 0.000 0.012 0.120 —0.080 -0.031 —0.052  0.038 0.098 0.049 —0.048 —0.122 .
S.D. 1.000 0.907 - 1.136 0.925 0826 1.007  0.878  0.936 1.000 0.772 0.860
Skew 0.104 —0.326 0976 —0.342  0.234 —0.248 1.002 0.233  0.023 —0.105 —0.375
Kurt 12.688 3.922 5183 1.839  0.734 2.796  2.768 1.038.  2.350 0.313 2.598
All Stoeks, 1992 to 1996
Mean 0.000 —0.119 —0.058 —0.033 —00l13 —0.078  0.086 —0.006 —0.011 0.003  —0.105
.. 1.000 0926 0854 0964 1106 1.0903  0.901 0.973  0.879 0.932 0.875
Skew —0.036  0.079 -0015 1399 0158 —-0.127  0.150 0.283 0236 0.039  —0.097
Kurt 5.377 2818 —0.059 7.584 0626 2.019  1.040 1.266 1.445 1.583 0.205
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Table VII

Kolmogorov-Smirnov test of the equality of conditional and unconditional 1-day return distributions
for NYSE/AMEX stocks from 1962 to 1996, in 5-year subperiods, and in size quintiles. Conditional
returns are defined as the daily return three days following the conclusion of an occurrence of one of
10 technical indicators: head-and-shoulders (HS), inverted head-and-shoulders (IHS), broadening
top (BTOP), broadening bottom (BBOT), triangle top (TTOP), triangle bottom (TBOT), rect-
angle top (RTOP), rectangle bottom (RBOT), double top (DTOP), and double bottom (DBOT).
All returns have been normalized by subtraction of their means and division by their standard
deviations. p-values are with respect to the asymptotic distribution of the Kolmogorov-Smirnov
test statistic. The symbols ‘r(~.) and ‘7(~) indicate that the conditional distribution is also
conditioned on decreasing and increasing volume trend, respectively.

Statigtic HS IHS BTOF BBOT TTOP TBOT RTOP RBOT DTOP DBOT

All Stocks, 1962 to 1996

¥ 1.89 1.22 1.15 1.76 0.90 1.09 1.84 2.45 1.51 1.06
p-value 0.002 0.104 0.139 0.004 0.393 0.185 0.002 0.000 0.021 0.215
7 7(~N) 1.49 0.95 0.44 0.62 0.73 1.33 1.37 1.77 0.96 0.78
p-value 0.024 0.327 0.989 0.839 0.657 0.059 0.047 0.004 0.319 0.579
¥ 7(~) 0.72 1.05 1.33 1.59 0.92 1.29 1.13 1.24 0.74 0.84

pvalue . 0671 0.220 0.059 0.013 0.368 0.073 0.1566 0.090 0.638 0;481

v Diff. 0.88 0.54 0.59 0.94 0.75 1.37 0.79 1.20 0.82 0.71
p-value 0418 0935 0879 0.342 0.628 0.046 0.557 0.111 0.512 0.693




Table VII (continued)

Statistic HS IHS BTOF BBOT TTOP TBOT RTOP EHRBOT DTOP DBOT
Smallest Quintile, 1962 to 1996
" 059 119 0.72 1.20 0.98 1.43 1.09 1.19 0.84 0.78
p-value 0.872 0.116 0.679 0.114 0.290 0.033 0.188 0.120 0.485 0.583
77~ 0.67  0.80 1.16 0.69 1.00 1.46 1.31 0.94 1.12 0.73
p-value 0.765 0.540  0.136 0.723 0.271 0.029 0.065 0.339 0.165 0.663
v 7(.) 043 095 0.67 1.03 0.47 0.88 0.51 0.93 0.94 0.58
p-value 0994 0325  0.756 0.236 0.981 0.423 0.959 0.356 0.342 0.892
~ Diff. 0.52  0.48 1.14 0.68 0.48 0.98 0.98 0.79 1.16 0.62
p-value 0.951 0974 0.151 0.741 0.976 0.291 0.294 0.552 0.133 0.840
2nd Quintile, 1962 to 1996
T 1.82 1.63 0.93 0.92 0.82 0.84 0.88 1.20 1.46 0.84
p-value 0.003 0.010  0.353 0.365 0.505 0.485 0.417 0.073 0.029 0.478
7 T 1.62  1.03 0.88 0.42 0.91 0.90 0.71 0.86 1.50 0.97
p-value 0.010 0.242  0.427 0.994 0.378 0.394 0.703 0.443 0.022 0.298
¥ () 1.06 - 1.63 0.96 0.83 0.89 0.98 1.19 1.15 0.96 0.99
p-value  0.213  0.010  0.317 0.497 0.407 0.289 0.119 0.141 0.317 0.286
~ Diff. 0.8 0.94 1.04 0.71 1.22 0.92 0.99 0.79 1.18 0.68
pvalue  0.576 0334  0.228 0.687 0.102 0.361 0.276 0.564 0.126 0.745
3rd Quintile, 1962 to 1996
v 0.83 156 1.00 1.28 0.57 1.03 1.96 1.50 1.55 1.14
p-value  0.502 0.016  0.266 0.074 0.903 0.243 0.001 0.023 0.016 0.150
7 () 095 094 0.66 0.76 0.61 0.82 1.45 1.61 117 1.01
p-value 0.326 0.346 0.775 0.613 0.854 0.520 0.031 0.012 0.131  0.258
17~} 1.05  1.43 093 - 114 0.63 0.80 0.93 0.78 0.59 0.86
p-value 0.223 0033  0.350 0.147 0.826 0.544 0.354 0.578 0.878 0.450
v Diff. 1.02 1.14 - 045 0.48 0.50 0.89 0.66 0.91 0.72 1.15
p-value 0.246 0148  0.986 0.974 0.964 0.413 0.774 0.383 0.670 0.143
4th Quintile, 1962 to 1996
¥ 072 061 1.29 0.84 0.61 0.84 1.37 1.37 0.72 0.53
pvalue  0.683 (.852 0.071 0.479 0.855 0.480 0.048 0.47 0.682 0.943
¥ 7(%) 101 0.95 0.83 0.96 0.78 0.84 1.34 0.72 0.62 1.01
p-value 0.255 0.330  0.504 0.311 0.585 0.487 0.056 0.680 0.841 0.258
¥ (") 093 0.66 1.29 0.96 1.16 0.69 0.64 1.16 0.69 0.85
p-value 0.349 0772  0.072 0.316 0.137 0.731 0.810 0.136 0.720 0.468
~+ Diff. 1.10 097 0.64 1.16 1.31 0.78 0.64 0.92 0.66 1.10
p-value 0.175 0301  0.804 0.138 0.065 0.571 0.806 0.363 0.780 0.176
o Largest Quintile, 1962 to 1996
¥y 1.25 1.16 0.98 0.48 0.50 0.80 0.94 1.76 0.90 1.28
p-value 0.088 0.136  0.287 0.977 0.964 0.544 0.346 0.004 0.395 0.077
1 T(~) 1.12  0.90 0.57 0.78 0.64 1.17 091 0.87 0.64 1.20
p-value 0.164 0.386  0.906 0.580 0.806 0.127 0.379 0.442 0.802 0.114
7 7(~) 0.81 093 0.83 0.61 0.69 0.81 0.73 0.87 0.46 0.88
p-value 0.522 0350  0.495 0.354 0.729 0.532 0.661 0.432 0.982 0.418
7 Diff. 0.71 054 0.59 0.64 0.76 1.2t 0.85 1.11 0.54 0.79
p-value 0699 0934 0.87T4 0.800 0.607 0.110 0.467 0.170 0.929 0.552




Table VII (continued)

Statistic HS INs BTOP BBOT TTOP TBOT RTOP RBOT DTOP DBOT

All Stocks, 1962 to 1966

“y 129 L67 107 072 0.75 1.32 1.20 1.53 2.04 1.73
p-value  0.072 0.007 0.202 0671  0.634 0062 0.112 0018  0.001L  0.005
y7(~) 083 101 104 0.80 0.63 180  0.66 1.84 1.03 1.54

pvalue 0499 0260 0232 0.539  0.82  0.003 0771 0002 0244 0017
v7(») 113 113  0.84 0.84 0.58 1.40 112 - 083 1.09 1.16
pvalue  0.156 0153 0.480 0475 0894  0.040 0163 0492  0.18%  0.135
yDiff. 065 071  0.75 0.76 0.60 190 068 1.35 0.73 0.83

p-value 0.799 0.691 0.629 0.615 0.863 0.001 0.741 0.052 0.657 0.503
All Stocks, 1967 to 1971

¥ L10 096  0.60 0.65 0.98 0.76 1.2¢ 1.65 0.87 1.22
pvalue  0.177  0.317 0.867  0.797 0292  0.606 0.071  0.009 0436  0.101
v7(~) 102 080  0.53 0.85 0.97 0.77 0.71 1.42 0.97 1.06
pvalue  0.248 0551 0943 0464  0.303 ° 0590 0700 0.035  0.300  0.214
vyr(») 108 086  0.68 0.91 1.11 0.82 0.79 0.73 0.71 0.96
pvalue 0190 0454 0750 0373 0168 0508 0554  0.660 0.699  0.315
4 Dif. 136 051 053 0.76 0.68 0.71 0.71 0.98 1.06 1.12

p-value 0.049 0.956 0.942 0.616 0.751 0.699 0.701 0.290 0.210 0.163
All Stocks, 1972 to 1976

¥ 047 075 0.87 1.56 .21 0.75 0.87 0.94 1.64 1,20
p-value  0.980 0620 0441  0.015 0106 0.627 0441 0341  0.009  0.113
yr(~) 080 040  0.50 1.24 1.21 0.65 1.26 0.63 0.70 1.39
pvalue 0539 0998 0966 0093  0.106 0.TM  0.084 0821 0718  0.041
yr(») 049 0.78 0.94 L.21 1.12 103 081 0.95 0.84 0.70
p-value 0970 0577 0340 0108  0.159 0244 0.521  0.331  0.485  0.719
~+ Diff. 0.55  0.56 0.51 0.95 0.81 111 L.15 0.62 0.67 1.31

pvalue 0925 0915 0.960 0333 0525 0.170  0.141 0836  0.767  0.065
‘ Al Stocks, 1977 to 1981 - ‘

v 1.16 073 0.76 1.16 0.82 1.14 1.01 0.87 0.86 1.79

pvalue 0138 0.665 0617 0136 0506 0147 0.263 0428 0449  0.003

yr(x)  L04 073 100 1.31 1.10 1.32 0.83 0.80 1.20 1.81

pvalue  0.228 0654 0274 0065 0176  0.062 0494 0550  0.113  0.003

71(») 075 084  0.88 0.65 0.67 0.76 1.51 141 0.86 0.99

pvalue 0623 0476 0426 0799  0.754  0.602  0.020. 0.037  0.450  0.280

+Diff. 067 094 088 0.70 0.65 0.70 1.11 1.29 1.16 0.70 .

p-value 0.767 0.335 0.423 0.708 0.785 0.716 0.172 0.073 0.137 0.713




Table VII (continued)

Statistic HS IHS BTOP BBOT TTOF TBOT RTOFP RBOT DTOP DBOT

All Stocks, 1952 to 1986

¥ 1.57  0.99 0.59 1.46 1.47 1.04 0.87 0.68 0.76 0.90
p-value  0.015 0.276 0.883  0.029 0027 0232 0431 - 0.742 0617  0.387
vr{~) 117 068 0.44 1.30 1.53 1.21 1.08 0.93 0.84 0.88
pvalue  0.129 0741 0991 0070 0.018 0106 0.190 0356  0.478 0.421
vy 081 103 0.74 0.62 0.83 1.23 0.77 0.79 0.63 0.81
pvalue  0.533 0.243 0.640 0.83t 0499 0097 0597 0564  0.821 0.528
+ Diff. 051  0.79 0.70 0.81 0.74 1.21 0.73 0.75 0.93 0.74

p-value 0.961 0.567 0.717 0.532 0.643 ° 0.107 0.657 0.623 0.352 0.642
All Stocks, 1987 to 1991

¥ 1.36 1.53 1.056 0.67 0.75 0.86 0.60 1.09 1.20 0.67
p-value 0.048 0019 - 0219 ' 0.756 0.627 0.456 0.862 0.185 0.111 0.764
7 1(~) 0.52 1.16 1.25 072 103 0.81 0.81 0.61 1.07 0.68
p-value 0.953 0.135 - 0.087 0.673 0.235 0.522 0.527 0.848 0.201 0.751
v () 1.72 1.03 0.64 1.37 0.74 1.10 1.04 1.20 1.02 1.32
p-value 0.006 0.241 0.813 0.046 0.639 0.181 0.232 0.111 . 0.250 0.062
~ Diff. 1.11 1.29 1.07 1.06 0.67 0.93 0.89 0.74 0.84 1.17

p-value 0.168 0.072 0.201 0.215 0.753 0.357 0.403 0.638 0.483 0.129
All Stocks, 1992 to 1996

o 150 131  1.05 1.89 1.27 0.94 1.23 0.66 1.72 1.54
pvalue 0022 0066 0222 0.002 0078 0343 0095 0782 0005  0.018
yr{~) 087 105 060 0.89 111 1.03 0.90 0.65 0.99 112
pvalue  0.443 0218 0.858 0404 0174 0242 0390 0.787 0283  0.165
7r{”) 072 066  0.75 1.42 1.02 0.58 0.61 0.64 1.36 0.93
pvalue  0.670 0778 0.624  0.036 0246  0.895 0.854  0.813  0.048  0.357
4+ Dif.  0.58 0.88  0.50 0.49 0.43 0.81 0.60 0.46 0.96 0.99

pvalue  D.B87 0422 0966 0971 0993 0528 0858 0984 0314  0.282




Table VIII

Kolmogorov-Smirnov test of the equality of conditional and unconditional 1-day return distribu-
tions for NASDAQ stocks from 1962 to 1996, in 5-year subperiods, and in size quintiles. Conditional
returns are defined as the daily return three days following the conclusion of an occurrence of one of
10 technical indicators: head-and-shoulders (HS), inverted head-and-shoulders (IHS), broadening
top (BTOP), broadening bottom (BBOT), triangle top (TTOP), triangle bottom (TBOT), rect-
angle top (RTOP), rectangle bottom (RBOT), double top (DTOP), and double bottom (DBOT).
All returns have been normalized by subtraction of their means and division by their standard
deviations. p-values are with respect to the asymptotic distribution of the Kolmogorov-Smirnov
“test statistic. The symbols ‘7(~)’ and ‘r(~)’ indicate that the conditional distribution is also
conditioned on decreasing and increasing volume trend, respectively.

Statistic HS IHS BTOP BBOT TTOP TBOT RTOP RBOT DTOP DBOT

All Stocks, 1962 to 1996

¥ 231 2.68 160 184 2.81 2.34 2.69 1.90 2.29 2.06
p-value 0.000  0.000 0.012 0.002 0.000 0.000 0.000 0.001 0.000 0.000
7 T{~) 1.86 1.53 1.356 0.99 1.97 1.95 2.16 1.73 1.38 1.94
p-value -~ 0.002 0.019 0.052 0.281 ¢.001- 0.001 0.000 0.005 0.045 0.001
v () 1.59 2.10 1.82 1.59 1.89 1.18 1.57 1.22 2.15 1.46
p-value . 0.013  0.000 0.003 0.013 0.002 0.126 0.014 0.102 0.000 0.028
« Diff. 1.08 0.86 1.10 0.80 1.73 0.74 0.91 0.75 0.76 1.52

p-value 0.195  0.450 0.175 0.542 0.005 0.637 0.379 0.621 0.619 0.020




Table VIII (continued)

Statistic HS IHS BTOP BBOT TTOFP TBOT RTOP RBOT DTOP DBQT

Smallest Quintile, 1962 to 1996

¥ 151 216  L72 1.68 1.22 1.55 2.13 1.70 1.74 1.98
pvalue 0021 0000 0006 0007 0.101 0016 0000 0006 0.005  0.001
47(~x) L16 130 085 1.14 1.25 1.62 1.43 1.05 1.08 1.95
p-value  0.139 0070 0463 0150  0.089 0010 0033 0216 0.191  0.001
yr(») 0.8 LT3 16l 2.00 1.34 0.79 1.58 1.52 1.47 1.20
pvalve  0.462 0005 0.012 0001 0055 0553  0.014 0019 0026  0.115
4 Dif.  1.04 095  0.83 1.44 1.39 0.78 0.95 0.73 0.94 1.09

p-value 0.227 0334 0.493 0.031 0.042 0.574 0.326 0.654 0.338 0.184
2nd Quintile, 1962 to 1996

¥ 155 146  0.94 144 1.24 1.08 1.20 1.10 1.90 1.27
pvalue  0.016 0020 0341 0031 0085 0192 0113 0175  0.001  0.078
yr(~) L1l 113 108 0.92 1.23 0.79 1.34 1.19 1.09 1.61
pvalue  0.173 0157 0.192 0371  0.097 0557 0055  0.117  0.185  0.011
yr() 137 087 0.3 0.97 1.38 1.29 1.12 0.91 1.12 0.94
pvalue  0.048 0439 0665 0309 0.044 0073  0.162 0381  0.165  0.343
4 Dif. 123 .0.62 097 0.69 1.02 1.05 1.09 0.78 0.58 0.51

p-value 0.095 0.835 0.309 0.733 .248 0.224 0.183 0.579 0.894 0.955
3rd Quintile, 1962 to 1996

¥ 1.25 1.72 0.82 1.71 1.41 1.52 1.25 1.84 1.86 1.82
p-value . 0.087 0.005 0.510 0.006 0.038 0.020 0.089 0.002 0.002 0.003
7 7(~) 0.93 1.08 0.54 1.23 1.06 1.02 0.79 1.47 1.38 0.88
p-value 0.348 0.194 0.530  0.087 0.213 0.245 0.560 0.026 0.044 - 0.423
¥ () 0.59 1.14 0.97 1.37 0.75 101 1.13 1.34 1.37 1L.78
p-value 0.873 0.146 0.309 0.047 0.633 0.262 0.159 0.054 0.047 0.003
v Diff. 061  0.89 0.58 0.46 0.61 .89 .52 0.38 0.60 1.09

p-value 0852 0.405 0.890 0.984  0.844 0404 0947 0999  0.864  0.188
' 4th Quintile, 1962 to 1996

¥ 1.04 0.82 1.20 0.98 1.30 1.25 1.88 0.79 0.94 0.66
p-value 0.233 0.510 ¢.111 0.298 0.067 0.087 4.002 0.553 0.341 0.779
¥ 7(~) 0.81 .54 057 1.05 0.92 1.06 1.23 0.72 1.53 0.87
p-value ¢.528 0.935 0.897 0.217 0.367 0.215 0.097 0.672 0.019 0.431
T 7(”) 0.97 1.04 1.29 0.53 2.25 0.71 1.05 0.77 1.20 0.97
p-value ¢.306 0.229 0.071 0.938 0.000 0.696 0.219 0.589 0.114 0.309
 Diff. 1.17 0.89 0.98 0.97 1.86 0.62 0.93 0.73 1.31 0.92

p-value 0.128 0.400 0.292 0.301 0.002 0.843 0.362 0.653 0.065 0.371
Largest Quintile, 1962 to 1996

¥ 1.08 1.01 1.03 0.66 0.92 0.68 .85 1.16 1.14 0.67
p-value 0.190  0.255 0.242 0.778 0.360 0.742 0.462 0.137 0.150 0.756
7 T(~) 1.03 .54 0.93 0.47 0.77 0.76 .85 0.62 0.85 1.14
p-value 0.237  0.931 0.356 0.981 0.587 0.612 0.468 0.840 G.465 0.149
= 7(.) 1.18 1.39 0.50 0.93 .88 1.25 0.77 1.13 0.93 1.12
p-value 0.123 0.041 0.967 4.358 0.415 0.089 0.597 0.156 0.292 0.160
v Diff. 0.94 1.25 0.73 .84 0.76 111 0.73 0.86 0.86 0.77

p-value ¢.342 0.090 0.668 0.476 0.617 0.169 0.662 0.457 .454 0.598




Table VIII (continued)

Statistic HS IHS BTOP BBOT TTOP TBOT RTOP RBOT DTOP DBOT
All Stocks, 1962 to 1966
¥ 1.0l 084  1.08 0.82 0.71 0.70 1.59 0.89 1.12 1.10
pvalue  0.261 0481 0193 0508 0.697 0718 0013 0411  0.166  0.175
yr(~) 095 065 041 1.05 0.51 113 0.79 0.93 0.93 L2t
pvalue 0322 0798 0.997 0224 0956 0155 0556 0350  0.350  0.108°
yr(2}) 077 096 083 0.73 1.35 0.49 1.17 0.62 1.18 1.15
pvalue  0.586 0314 0489 0663 0082 0972 0130 0843 0121  0.140
yDiffl. 110 067  0.32 0.69 1.29 0.58 0.80 0.75 0.98 1.06
p-value 0174 0.761 1.000 0.735 0.071 0.892 0.551 0.620 0.298 0.208
All Stocks, 1967 to 1971
¥ 075 110  1.00 0.74 1.27 1.35 1.16 0.74 0.74 1.21
p-value 0.636 0.175 0.273 0.637 0.079 0.052 0.136 0.642 0.638 0.107
yr(~) 1.03 052 Q.70 0.87 1.24 133 1.29 0.83 0.72 1.45
p-value  0.241 0947 0714 0438 0.092 0058 0072 049 0684  0.031
v 2} 1.05 1.08 1.12 0.64 0.79 0.65 0.55 0.53 0.75 0.69
p-value ¢.217  0.192 0.165 0.810 0.566 0.797 0.923 0.941 0.631 0.723
+Diff. 124 089  0.66 0.78 1.07 0.88 0.88 0.40 091 0.76
pvalue  0.093 0413 0770 0585 0203 0418 0423 0997 0385  0.602
All Stocks, 1972 to 1976
¥ 0.82 128 184 1.13 1.45 1.53 1.31 0.96 0:85 1.76
pvalue 0509 0077 0002 0156 0020 0019 0.064 0314 0464  0.004
yr(~) 059 073 —99.00  0.91 1.39 0.73 1.37 0.98 1.22 0.94
pvalue 0875 0669 0000 0376 0.042 0.654 0046  0.292  0.100  0.344
yr() 065 073 —99.00 —99.00 -99.00 —99.00  0.59 0.76 0.78 0.65
p-value  0.800 0653 0000 0000 0000 0.000 0878 0611 0573  0.798
v Diff. 048 057 -99.00 -99.00 -—99.00 —99.00 0.63 0.55 0.92 0.37
p-value 0974 0.902 0.000 0.000 0.000 0.000 0.828 0.925 0.362 0.999
AN Stocks, 1977 to 1981
¥ 1.35 140 103 1.02 1.55 2.07 0.74 0.62 0.92 1.28
pvalue  0.053 0039 023 0249 0.016 0.000 0636 0.842 0369  0.077
vr(~}) 119 147 —99.00 —99.00 0.96 0.98 0.86 0.79 0.81 0.68
pvalue  0.117 0027 0000 0000 0317 0200 0453 0.554 0522  0.748
yr(} 0690 094 080 —99.00 146 —99.00 0.56 0.82 1.06 0.94
pvalue 0728 0341 0542 0000 0028 0000 0918 0514 0207  0.336
~ Diff. 0.73 0.90 -99.00 -99.00 035 ~99.00 0.44 0.37 0.80 0.53
p-value 0.665 0.395 0.000 0.000 1.000 0.000 0.991 0.999 0.541 0.944




Table VIII {continued)

Statistic HS IHs BTOP BBOT TTOP TBOT RTOP RBOT DTOP DBOT

Al Stocks, 1982 to 1986

7 166 15 L1703 1.46 1.69 1.04 1.24 2.44 1.27
pvalue  0.008 0013 0.12¢ 0654 0028 0006 0.232  0.093 0000 0.078
yr(~x) 165 L10 046 0.74 0.95 147 083 1.18 1.20 0.59
pvalue  0.009 0176 0984 0641 0330 0027 0.503 0121 0.112 0873
¥r{~) 113 131  0.86 0.42 1.17 1.04 097 1.13 1.68 0.89

p-value 0.153 0.065 0.445 0.995 0.129 0.231 0.302 0.155 0.007 0.405

v Diff. 0.67 0.39 0.51 0.42 0.85 0.43 0.41 0.67 0.66 0.75
p-value 0.755 0.998 0.957 0.994 0.462 0.993 0.996 0.766 0.782 0.627

All Stocks, 1987 to 1991

¥ 1.24 1.29 0.91 0.88 1.28 1.41 2.01 1.4% 1.55 1.53
p-value 0.091 0.070 0.384 0421 0.074 0.039 0.001 0.024 0.017 0.019
7 1(~) 1.05 1.00 1.00 0.78 1.68 0.92 1.67 1.25 0.61 0.86
p-value 0.221 0.266 0.274 0.580 0.007 0.36% . 0.008 0.087 0.849 0.448
¥ 1() 1.23 1.26 1.06 1.32 0.65 1.27 1.10 1.26 1.67 1.81
p-value 0.099 0.084 0.208 0.060 0.787 0.078 0.176 0.085 0.007 0.003
~ Diff. 0.80 0.91 1.22 1.28 1.22 0.92 0.87 0.81 1.07 1.05

pvalue 0552 0.375 0.103 0075  0.102  0.360  0.431 0520 0.202  0.217
Al Stocks, 1992 to 1996

¥ .21 161 0.84 0.90 0.97 0.91 1.60 1.51 1.13 1.00
pvalue . 0.108 0011 0.476  0.3%4 0299 0379 0012 0.021 0.156 0.265
T 7(~) 068 102 08l 0.78 0.81 0.93 0.79 1.07 0.94 0.64
pvalue 0752 0.246 0.530 0578 0.532 0.357  0.558  0.201 0.340 0.814
¥ 7(”) 1.56  0.85 0.71 1.00 1.10 104 1.43 0.93 0.90 1.44
p-value  0.015 0470 0.688  0.275 0.180 0231  0.034  0.352 0.392 0.031
- Diff. 145 059 - 0.94 0.62 1.15 1.14 0.64 0.52 0.59 1.35

p-value 0.030 0.879 0.346 0.840 0.139 0.148 0:814 0.953 0.874 0.052




Table IX

Bootstrap percentiles for the Kolmogorov-Smirnov test of the equality of conditional and uncondi-
tional 1-day return distributions for NYSE/AMEX and NASDAQ stocks from 1962 to 1996, and
for size quintiles, under the null hypothesis of equality. For each of the two sets of market data,
two sample sizes, m; and m3, have been chosen to span the range of frequency counts of patterns
reported in Table 1. For each sample size m;, we resample 1-day normalized returns (with replace-
ment) to obtain a bootstrap sample of m; observations, compute the Kolmogorov-Smirnov test
statistic (against the entire sample of 1-day normalized returns), and repeat this procedure 1,000
times. The percentiles of the asymptotic distribution are also reported for comparison.

NYSE/AMEX Sample NASDAQ Sample
Percentile
m Am; T ™2 Am,,n P mii Apm, R T2 Ay n &
All Stocks, 1962 to 1996
0.01 2076 0.433 725 0.435 0.441 1320 0.430 414 0.438 0.441
0.05 2076 0.515 725 0.535 0.520 1320 0.514 414 0.522 0.520
0.10 2076 0.568 725 0.590 0.571 1320 0.573 414 0.566 0.571
0.50 2076 0.827 725 0.836 0.828 1320 0.840 414 0.826 0.828
0.90 2076 1.219 725 1.237 1.224 1320 1.244 414 1.229 1.224
0.95 2076 1.385 725 1.395 1.358 1320 1.373 414 1.340 1.358
0.99 2076 1.608 725 1.611 1.628 1320 1.645 414 1.600 1.628
Smallest Quintile, 1962 to 1996
0.01 - 320 0.456 T8 0.406 0.441 218 0.459 41 0.436 0.441
0.05 320 0.535 78 0.502 0.520 218 0.533 41 0.498 0.520
0.10 320 0.586 78 0.559 0.571 218 0.590 41 0.543 0.571
0.50 320 0.848 78 0.814 0.828 218 0.847 41 0.801 0.828
0.9 320 1.231 78 1.204 1.224 . 218 1.229 41 1.216 - 1.224 -
0.95 320 1.357 78 1.330 1.358 218 1.251 41 1.332 1.358
0.99 320 1.661 78 1.590 1.628 218 1.708 41 . 1.571 1.628
2nd Quintile, 1962 to 1996
0.01 420 0.445 146 0.428 0.441 305 0.458 68 0.426 0.441
0.05 420 0.530 146 0.505 0.520. 305 0.557 68 0.501 0.520
0.10 420 0.580 146 0.553 0.571 305 0.610 68 0.559 0.571
0.50 420 0.831 146 0.823 0.828 305 0.862 68 0.804 0.828
0.90 420 1.197 146 1.210 1.224 305 1.265 68 1.210 1.224
0.95 420 1.349 146 1.343 1.358 305 1.407 68 1.409 1.358
0.99 420 1.634 146 1.626 1.628 305 1.686 68 1.614 1.628
3rd Quintile, 1962 to 1996
0.01 458 0.442 145 0.458 0.441 279 0.464 105 0.425 0.441
0.05 458 0.516 145 0.508 0.520 279 0.539 105 0.525 0.520
0.10 458 0.559 145 0.557 0.571 279 0.586 105 0.570 0.571
0.50 458 0.838 145 0.835 0.828 279 0.832 105 0.818 0.828
0.90 458 1.216 145 1.251 1.224 279 1.220 105 1.233 1.224
0.95 458 1.406 145 1.397 1.358 279 1.357 105 1.355 1.358

0.99 458 1.660 145 1.661 1.628 279 1.606 105 1.638 1.628




Table IX (continued)

NYSE/AMEX Sample NASDAQ Sample
Percentile
my Am, M me Amn K.Y A my Amx n ma Amg n A
4th Quintile, 1962 to 1996
0.01 424 0.429 173 0.418 0.441 303 0.454 92 0.446 0.441
0.05 424 0.506 173 0.516 0.520 303 0.526 92 0.506 0.520
0.10 424 0.552 173 0.559 0.571 303 0.563 92 0.5564 0.571
0.50 424 0.823 173 0.815 0.828 303 0.840 92 0.818 0.828
0.90 424 1.197 173 1.183 1.224 303 1217 92 1.178 1.224
0.95 424 1.336 173 1.313 1.358 303 1.350 92 1.327 1.358
0.99 424 1.664 173 1.592 1.628 303 1.659 92 1.606 1.628
Largest Quintile, 1962 to 1996
0.01 561 0.421 167 0.425 0.441 308 0.441 108 0.429 0.441
0.056 561 0.509 167 0.500 0.520 308 0.520 108 0.508 0.520
0.10 561 0.557 167 0.554 0.571 308 0.573 108 0.558 0.571
0.50 561 0.830 167 0.817 0.828 303 0.842 108 0.816 0.828
0.90 561 1.218 167 1.202 1.224 308 1.231 108 1.226 1.224
0.95 561 1.369 167 1.308 1.358 308 1.408 1038 1.357 1.358

0.99 561 1.565 167 1.615 1.628 308 1.724 103 1.630 1.628




Table X (continued)

NYSE/AMEX Sample NASDAQ Sample
Percentile
my Am; T maz Amg K A ™1 Aml B ™ma Amg m fa
All Stocks, 1982 to 1986
0.01 313 0.462 106 0.437 0.441 120 0.448 44 0.417 0.441
0.05 313 0.542 106 0.506 0.520 120 0.514 44 0.499 0.520
0.10 313 0.585 106 0.559 0.571 120 0.579 44 0.555 0.571
0.50 313 0.844 106 0.819 0.828 120 0.825 44 0.802 0.828
0.90 313 1.266 106 1.220 1.224 120 1.253 44 1.197 1.224
0.95 313 1.397 106 1.369 1.368 120 1.366 44 1.337 1.358
0.99 313 1.727 106 1.615 1.628 120 1.692 44 1.631 1.628
All Stocks, 1987 to 1991
0.01 287 0.443 98 0.449 0.441 312 0.455 50 0.432 0.441
0.05 287 0.513 98 0.522 0.520 312 0.542 50 0.517 0.520
0.10 287 0.565 98 0.566 0.571 312 0.610 50 0.563 0.571
0.50 287 0.837 98 0.813 0.828 312 0.878 50 0.814 0.828
0.90 287 1.200 98 1.217 1.224 312 1.319 50 1.216 1.224
0.95 287 1.336 98 1.348 1.358 312 1.457 50 1.323 1.358
0.99 287 1.626 98 1.563 1.628 312 1.701 50 1.648 1.628
All Stocks, 1992 to 1996
0.01 389 0.438 102 0.432 0.441 361 0.447 87 0.428 0.441
0.05 389 0.522 102 0.506 0.520 361 0.518 87 0.492 0.520
0.10 389 0.567 102 0.558 0.571 361 0.559 87 0.550 0.571
0.50 389 0.824 102 0.818 0.828 361 0.817 87 0.799 0.828
0.9 389 1.220 102 1.213 1.224 361 1.226 87 1.216 1.224
0.95 389 1.321 102 1.310 1.358 361 1.353 87 1.341 1.358
0.99 389 1.580 102 1.616 1.628 361 1.617 87 1.572 1.628°




